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Abstract—In order to improve the creativity of computer aided
design, a grounded artificial language with creative properties
such as ambiguity and duality of patterning need to be developed.
Initially, before using artificial language for creative design,
the possibility of transforming between artificial utterances and
design concepts should be tested. In this paper, a hybrid system
including Holographic Reduced Representations (HRR) and Self-
Organizing Map (SOM) is built up to represent spatial relations
of simple shapes, and develop mapping between the representa-
tions and relevant artificial utterances. The computational results
have proved that the transformation between artificial language
and design concepts can be realized; and the hybrid system could
be utilized as an important part of the “brains” of curious agents
for the evolution of artificial language in computational language
games.

I. INTRODUCTION

Language plays many important roles in design from the
specification of requirements to the collaboration between
design team members, and the documentation of designs. I.e.,
language is not only important for communication between
clients and designers, but also useful for creating concepts
and transmitting knowledge to stimulate creative design. By
utilizing design language, semantic labels for design concepts
would be produced to allow “thinking by writing” in ways
similar to “thinking by sketching”.

A. The language of design

Generally, as Dong (2009) stated, the language of design
is mainly used for aggregating design elements related with
association, and accumulating design structures relating to
combination, as well as evaluating design works via the
analysis of design concept with respect to goals. Among them,
aggregation is very important for finding new concepts and
transforming design ideas to some new areas. For example,
an architect made a claim “the shape of the pavilion’s roof
resembles a leaf.” Then the word-graph system displays a key
phrase in the statement “leaf”. Later, the architect might make
another statement “I would like the building’s structure to be
organic, to remind the occupants of a plant”. Then the system
might display a semantically related term such as “flower”
or “root”. Therefore, design language could be utilized to
improve design creativity [1]. In addition, Clark (1996) pointed
out that language is the “ultimate artefact” whose primary
purpose is not to communicate ideas between individuals but

to overcome cognitive limitations of the human brain through
the externalisation of complex thought in a grounded symbolic
form [2].

Particularly, Language can be utilized to generate new
concepts via connection. Hori (1994) developed a system
which may reveal hidden relations that were not easily noticed
by the user, who only needs to provide some basic symbols
and part of relations. In this system, the distance of conceptual
connection is measured by using multidimensional scaling
method. For example, if a word “A”, which has no relation
with “C”, has relation with “B”. The distance between “A”
and “B” is smaller than that of “A” and “C”. In addition, a
word “D” may come near “A”, when “A” has some relation
with “B” and “B” has relation with “D”. This may surprise
the user who is unaware of the relation between “A” and “D”.
Furthermore, the existing words are mapped into Euclidean
space which can be taken as a stimulus for detecting empty
place, relation, aggregation and exchange of nodes [3].

As described above, novel concepts could be found by
connecting different words. Accordingly, the transformation
from design requirements to functions, which is at the begin-
ning of creative design process (Function-Behavior-Structure
[4]), may probably be realized and enriched by utilizing
compositional language. Requirements are related with design
problems while functions are associated with design concepts.
The transformation from design problems to design concepts
could be realized by combining symbolic representations and
visual illustrations. In addition, compositional language can
evolve during the communication between clients and de-
signers to refresh and refine design concepts. Consequently,
evolutionary design may occur via the helix circulation of
problem finding and problem solution aided by connecting
various utterances representing different design concepts.

B. The Evolution of Language

Language is a distributed and self organizing system evolv-
ing in social communication, from simple utterances generated
by combination and transformation to complex emergence via
composition, decomposition and recursion etc. Through evolu-
tion, a shared lexicon of words and their associated meanings
would be generated [5]. The evolution of grounded language
for creative design may start from distributing symbolic units
randomly. Then various utterances would evolve to represent



different design concepts, which could be connected to adapt
surroundings to embodied design requirements.

The prime properties of languages for creative design are
ambiguity and duality of patterning such that a small stock
of meaningless sounds can be combined in numerous per-
mutations to make up a very large number of meaningful
units [6]. As is known, a single word may have multiple
meanings and different words may have similar meaning.
In addition, familiar words might have unfamiliar meanings.
Even when two people say the same word, it may denote
different meanings in terms of various contexts. Although
ambiguity sometimes may lead to misunderstanding, it can
become the source of creativity related with diversity. Some
of our previous multi-agent experiments have shown that,
the variety of meanings held by a field for a single word
increases highly as a consequence of individuals searching
for novel topics. Particularly, the ambiguities that arise in
domain-specific languages are evolved from the perspective
of modeling these languages [5].

For the evolution of language, Steels (1995) utilized lan-
guage games to evolve artificial utterances in multi-agent sys-
tems. One of these language games is guessing game, in which
one agent, the initiator, describes an object using a simple
utterance to a second agent, the recipient, who attempts to
identify the topic of the utterance based on their experience of
the previous utterances. Steels has shown that repeated playing
of such language games is capable of evolving languages
grounded in shared experiences [7].

Based on Steels’ general language games, more complicated
language games for creative design could be simulated with
the aid of associative representations representing multiple
relations of design shapes. Our experiments here are trying to
use appropriate representations to represent complex relations
of shapes and exploring new design concepts via artificial
neural networks. To simplify these experiments, geometric
relations between two rectangles (see Fig. 1) are chosen as
subjects, which could be extended to Rectilinear Volumes [8]
in future simulations.

II. HYBRID SYSTEM

Geometrical relations can not only be represented by uti-
lizing associative representations but also be explored and
enriched via machine learning to match generated “utterances”
with appropriate relations, and find new spatial relationships.
I.e., the transformation between design concepts and artificial
languages can be realized by adopting hybrid system combin-
ing symbolic components and artificial neural networks [9].
The hybrid system used here is the integration of Holographic
Reduced Representations (HRR) [10] and Self-Organizing
Map (SOM) [11], which has been used successfully by Levy
and Kirby (2006) in their experiment for developing regu-
lar mappings between meanings and sequences [12]. Con-
sequently, the hybrid system would become an important
part of the “brains” of curious agents running in multi-agent
environment to develop artificial language such as artificial
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Fig. 1. The relations between two rectangles

“utterances” for creative design based on Domain-Individual-
Field-Interaction framework [13].

A. Holographic Reduced Representations

Holographic Reduced Representations (HRR) are capable
of refreshing relative concepts and organizing the clusters
of ideas, and using memory efficiently for distributed repre-
sentations. By using HRR, reasonable representations could
be generated through the combination of basic rules and
randomness. In addition, the similarity between different ge-
ometric relations can be measured by using cosine. Further,
complicated relations can be represented within the same space
of memory as that of simple relations [10].

A language may evolve as a tree-like structure via compo-
sition and decomposition within Holographic Reduced Repre-
sentations (HRR). High-level combination can be produced by
combining several words from different linguistic trees such
as the combination of “fly” and “fish” to generate innovative
concepts. At the same time, complex design concepts can
be decomposed into embodied elements by tracking their
associations and categories. HRR (see Fig. 2)can realize both
of them by using circular convolution (t = c⊗x, see Equation
(1) and Algorithm 1) composing items, and circular correlation



Fig. 2. Circular convolution and circular correlation [10]

(y = c � t, see Equation (2) and Algorithm 2) decoding
convolution. Therefore, complicated symbolic system could
be encoded and decoded by using HRR[10].

tj =

n−1∑
k=0

ckxj−k (1)

for j = 0 to (n− 1) (Subscripts are modulo-n)

Algorithm 1 Circular convolution t = c⊗ x

c← self.value; x← other.value; t← emptyList
for j = 1→ self.dimensions do

t← t+None
t[−1]← 0
for k = 1→ self.dimensions do
i← (j−k+self.dimensions)mod self.dimensions
t[j]← t[j] + c[k] ∗ x[i]

end for
end for

yj =

n−1∑
k=0

cktj+k (2)

for j = 0 to (n− 1) (Subscripts are modulo-n)

Algorithm 2 Circular correlation y = c� t

c← self.value; t← other.value; y ← emptyList
for j = 1→ self.dimensions do

y ← y +None
y[−1]← 0
for k = 1→ self.dimensions do
i← (j + k) mod self.dimensions
y[j]← y[j] + c[k] ∗ t[i]

end for
end for

To evaluate the quality of Holographic Reduced Repre-
sentations (HRR), some general measurement methods such
as cosine similarity need to be adopted. As is known, the
cosine of zero is one, which means the two vectors are the
same. If it is less than one, they are different. When the

cosine becomes smaller, the difference between them becomes
greater. Therefore the cosine of the angle between two vectors
can be utilized to measure the similarity between geometric
relations represented via HRR[14].

B. Self-Organizing Map

Self-Organizing Map (SOM), which is an unsupervised
competitive learning method, is used to develop the mapping
between the distributed representations of symbolic sequences
and the distributed representations of propositions. Both sym-
bolic sequences and propositional meanings are represented
by high dimensional vectors of real numbers generated via
HRR [12]. These vectors include both the vectors representing
different meanings of rectangular relations and the vectors
representing relevant “utterances” taken as nodes for SOM.
Meaning-vectors and symbolic-vectors could be matched by
using Self-Organizing Map (SOM). After a number of gen-
erations, the network would develop systematically regular
mapping between meanings and “utterances” [12].

III. EXPERIMENTS AND RESULTS

In our computational experiments, the relative relations
of two rectangles (see Fig. 1) have been categorized via
Holographic Reduced Representations (HRR) successfully.
Following HRR, the representations of rectangular relations
were taken as initial samples for running Self-Organizing
Map (SOM) to match numbers of “utterances” with these
representations.

A. Representing the relations between two rectangles

The relative relations between two rectangles are defined by
three features. They consist of the types of geometry includ-
ing edge and area shared by two rectangles; different parts
including corner, side, middle, mid-side, center and whole of
share with them (see Table I); and the axis absolutely shared
by some rectangular relations (see Fig. 3). To begin with, each
general feature such as shape, share-geometry, share-part and
share-axis is represented as a random vector with 1024 (32x32)
dimensions (see Table II and Fig. 4). Secondly, detailed
elements are generated via addition or circular convolution
with these general features (see Table III and Fig. 4). Then,
eighteen rectangular relations are represented by combining
these elements via addition and circular convolution of HRR
(see Table IV).

aw s A1 2as s A1 2ew w A1 2 aw m A1 2 aw w A1 2

Fig. 3. Share axis

Each name of these rectangular relations is generated with
three or four characters. The first character is chosen between
“e” and “a”; “e” means two rectangles share at least part of
edge while “a” means they share at least part of area. The



TABLE I
CATALOG OF SHARING EDGE AND AREA

mid-side

share share edge share area
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corner
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ec c1 2

am s1 2

am s1 2

aM s1 2

aM s1 2

em w1 2

em w1 2

am m1 2

aw s A1 2

aw s A1 2

as s A1 2

ew w A1 2

aw m A1 2

aw m A1 2 aw w A1 2

aw c1 2

aw c1 2

aw M1 2

aw M1 2

aw1 2C

aw1 2C

as s1 2

ac s1 2

ac s1 2es w1 2

es w1 2

ac c1 2

es s1 2

TABLE II
HRR OF GENERAL FEATURES OF RECTANGULAR RELATIONS

shape = HRR(“shape”, random())
shareGeometry = HRR(“geometry”, random())
sharePart = HRR(“part”, random())
shareAxis = HRR(“axis”, random())

second and third character are selected from “c”, “s”, “m”,
“M”, “C” and “w”. “c” means corner; “s” means side; “m”
means middle; “M”, which means partial middle (mid-side),
is only for sharing area (see the vertical brick of “aM1s2”
compared with that of “am1s2” at the center of Fig. 1); “C”
means center; and “w” means whole. For examples, “aw1C2”
means one rectangle share its whole area while another one
only share its center (see the bottom relation in Fig. 1); “ec1c2”
means the two shapes both share a “corner” of their edges
while “ac1c2” means the two shapes both share a corner
of their areas (see the top relations in Fig. 1). In addition,
some names have the forth character, “A”, which means two
rectangles share at least one axis regardless of the change of
their sizes or that of the ratio of width to height (see Fig. 3).
In Table IV, “axis(0)” means it is not essential to share axis,

TABLE III
HRR OF DETAILED ELEMENTS OF RECTANGULAR RELATIONS

shape shape1 = shape+HRR(“shape1”, random())
shape2 = shape+HRR(“shape2”, random())

share edge = shareGeometry ⊗HRR(“edge”, random())
Geometry area = shareGeometry ⊗HRR(“area”, random())

sharePart

corner = sharePart⊗HRR(“corner”, random())
side = sharePart⊗HRR(“side”, random())
middle = sharePart⊗HRR(“middle”, random())
midside = sharePart⊗HRR(“midSide”, random())
center = sharePart⊗HRR(“center”, random())
whole = sharePart⊗HRR(“whole”, random())

shareAxis axis(0) = shareAxis⊗HRR(“axis(off)”, random())
axis(1) = shareAxis⊗HRR(“axis(on)”, random())

TABLE IV
HRR OF THE RELATIONS BETWEEN TWO RECTANGLES

ec1c2 = (edge+ shape1 ⊗ corner + shape2 ⊗ corner) + axis(0)
es1s2 = (edge+ shape1 ⊗ side+ shape2 ⊗ side) + axis(0)
ac1c2 = (area+ shape1 ⊗ corner + shape2 ⊗ corner) + axis(0)
es1w2 = (edge+ shape1 ⊗ side+ shape2 ⊗ whole) + axis(0)
ac1s2 = (area+ shape1 ⊗ corner + shape2 ⊗ side) + axis(0)
as1s2 = (area+ shape1 ⊗ side+ shape2 ⊗ side) + axis(0)
em1w2 = (edge+ shape1 ⊗middle+ shape2 ⊗ whole) + axis(0)
aM1s2 = (area+ shape1 ⊗midside+ shape2 ⊗ side) + axis(0)
am1s2 = (area+ shape1 ⊗middle+ shape2 ⊗ side) + axis(0)
am1m2 = (area+ shape1 ⊗middle+ shape2 ⊗middle) + axis(0)
ew1w2A = (edge+ shape1 ⊗ whole+ shape2 ⊗ whole) + axis(1)
as1s2A = (area+ shape1 ⊗ side+ shape2 ⊗ side) + axis(1)
aw1s2A = (area+ shape1 ⊗ whole+ shape2 ⊗ side) + axis(1)
aw1m2A = (area+ shape1 ⊗ whole+ shape2 ⊗middle) + axis(1)
aw1w2A = (area+ shape1 ⊗ whole+ shape2 ⊗ whole) + axis(1)
aw1c2 = (area+ shape1 ⊗ whole+ shape2 ⊗ corner) + axis(0)
aw1M2 = (area+ shape1 ⊗ whole+ shape2 ⊗midside) + axis(0)
aw1c2 = (area+ shape1 ⊗ whole+ shape2 ⊗ center) + axis(0)

or no axis is shared. On the contrary, “axis(1)” indicates that
at least one axis should be shared.

To clarify the process of HRR for representing rectangular
relations, a tree structure of the representation of relation
named “ac1s2” is illustrated in Fig. 4. As can bee seen, the
process consists of three steps. The first step is to generate
general features shown on level 1. Each feature is represented
by a list of random numbers with 32x32 dimensions. The
second step is to produce elements shown on level 3 by
combining relevant features and some new lists of random
numbers shown on level 2. For example, “area” is generated by
convoluting “shareGeometry” and a new list of random num-
bers named “area ”. This convolution and another convolution
of “shareGeometry” and some other new list for “edge” can
be used to clarify the relationships between “shareGeometry”,
“area” and “edge”. Among them “area” and “edge” are two
types of geometric share. In this example, area instead of only
edge is shared between two rectangles. So “area” is selected to
represent this relation. After generating all elements, the third
step is to select appropriate elements and combine them into
one list of numbers with the same dimensions. In this example,
“corner” is combined with “shape1” to produce “corner1 (c1)”
while “side” is combined with “shape2” to generate “side2
(s2)”. Then “corner1 (c1)” and “side2 (s2)” are combined with
“area (a)” to generate a new list, which is combined with
“axis(0)” to produce the final list named “ac1s2”. Here, “A” is
not added into this name because two rectangles do not share
axis (“axis(0)”) in this relation.

B. The results of representations

The results of HRR representations were clarified by using
cosine similarity to analyse the difference between eighteen
rectangular relations. The similarities of these relations are
shown in Table V. The similarity between two relations is
greater when the color is lighter. The difference between each
other is clarified regarded with the range of similarities from
0.19 to 1.00 covering 81% of the whole possible distributed
area. Therefore, the relations between two rectangles have
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TABLE V
COSINE SIMILARITIES BETWEEN RELATIONS OF TWO RECTANGLES

ec c1 2

es s
ac c
es w
ac s
as s
em w
aM s  
am s
am m
ew w A
as s A 
aw s A
aw m A 
aw w A 
aw c  
aw M
aw c

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

e
c

c
1

2

e
s

s

a
c

c

e
s

w

a
c

s

a
s

s

e
m

w

a
M

s
 

a
m

s

a
m

m

e
w

w
A

a
s

s
A

 

a
w

s
A

a
w

m
A

 

a
w

w
A

 

a
w

c
 

a
w

M

a
w

c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

been distinguished clearly and successfully by utilizing HRR.

C. Mapping “utterances” to representations

The “utterances” for mapping are also generated via HRR
(see Algorithm 3). Each node such as “fabeji” is com-
posed of six elements selected from different sets including
set1(b, c, d, f, g, h), set2(j, k), set3(a, e) and set4(i, o). By
combining all of these elements (6 × 6 × 2 × 2 = 144), one
hundred forty-four nodes are generated for SOM to map the
representations of eighteen rectangular relations.

In the process of mapping, forty nine epochs were imple-
mented. Each epoch included four hundred iterations. As illus-
trated in Fig. 5, the process can be divided into three stages.
The first stage is from epoch 1 to 17. In this stage, the mapping
between relations and utterances was unstable in terms of
extreme change of mapping from one epoch to another epoch.
The average success rate was lower than 1.3%. In addition, an
average of 16% of relations was not distinguished from others
as shown with the degrees of difference. I.e., almost three
relations were mapped with the same utterance in each epoch.
In the second stage from epoch 18 to 26, the success rate
increased sharply from 5.6% to 100%; and each relation was

Algorithm 3 Generate nodes for SOM
set1 ← list(“b”, “c”, “d”, “f”, “g”, “h”)
set2 ← list(“j”, “k”)
set3 ← list(“a”, “e”)
set4 ← list(“i”, “o”)
nodes← emptyList
for m = 1→ set1.length do

for n = 1→ set1.length do
for u = 1→ set2.length do

for v = 1→ set4.length do
newNodes ← set1[m] ⊗ set3[0] + set1[n] ⊗
set3[1] + set2[u] + set4[v]
nodes← nodes+ newNodes

end for
end for

end for
end for

mapped to different utterance. The last stage is from epoch
27 to 49. In this stage, the mapping between relations and
utterances became stable. No mapping was changed and each
relation was mapped to final appropriate utterance.
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TABLE VI
THE NUMBER OF EPOCHS WHEN OBTAINING EACH FINAL RESULT

ec c es s ac c es w ac s as s em w aM s am s1 2             1 2              1 2            1 2            1 2             1 2           1 2           1 2           1 2

am m ew w A   as s A    aw s A   aw m A  aw w A    aw c aw M aw c1 2      1 2 1 2 1 2 1 2 1 2 1 2           1 2           1 2

fabeji     fabeko    gafeji     daceki    habeko   gacejo   cafeko    gaheji     cafeji
 

babeji    caheko  babeko    baceki    badeki   cadeji    haheki   gadeko   dahejo
  

20/49   20/49     20/49     26/49    24/49     23/49    20/49     23/49    18/49 
 

21/49    20/49     22/49    23/49    24/49     24/49   24/49     21/49     26/49 
  

D. The results of mapping

Most results of mapping had been obtained before half of
total epochs being executed (see Table VI). The average of
epochs for obtaining results was 22 which made up 45% of
the total epochs. In addition, different utterance was mapped
to each relation after the 18th epoch which was in the early
stage occurring 37% of the total epochs. Therefore, SOM was
implemented efficiently and successfully.

IV. DISCUSSION AND FUTURE WORK

The mappings between rectangular relations and artificial
utterances have been completed by using the hybrid system
integrating Holographic Reduced Representations (HRR) and
Self-Organizing Map (SOM). The success is mainly due to
the compact and clear structure of the HRR of both geometric
relations and nodes used in SOM. For the former, each relation
is represented by two circular convolutions and three additions
(see Table IV), while for the latter, each node is generated
with similar structure as that of the former; and the total of
nodes is 144, which is enough for matching appropriate nodes
labelled with utterances to the eighteen relative relations of two
rectangles. In brief, the results of this experiment have proved
the possibility of transforming between artificial languages
and design concepts completed via the hybrid system within
associative memories and artificial neural networks.

The experiment implemented here is emphasized on the
transformation from “utterances” to existing design knowl-
edge. In future, new “utterances” would be generated by
recombining existing symbolic elements, and be transformed
to new design concepts which may be some missing design
parts relating to uncovered field. In addition, instead of Self-
Organizing Map, some other machine learning methods such
as Boosting [15], which includes iteratively learning weak
classifiers with respect to a distribution and adding them to
a final strong classifier, would be adopted to improve the
performance of transformation between design knowledge and
artificial language for creative designing.

Further, relevant simulations for evolving design language
will be implemented in multi-agent environment via the in-
teraction between different curious agents and cultures. For
example, the guessing game played by speaker agent and
listener agent will be simulated to develop an artificial lan-
guage for shape design. In each epoch of this game, speaker
chooses one relation between two rectangles, perceives it and
generates an utterance representing the relation, then shares
the utterance with listener. Listener receives the utterance,

compares it with existing utterances, maps it to suitable re-
lation, and shows the relation to speaker. Then, speaker would
agree or disagree with listener. Via repeatedly interaction
between speaker transforming ontology to lexicon and listener
transforming lexicon to ontology, a shared language accepted
by both of them would be developed for generating and
exchanging “interesting” works with associated utterances [5].
Consequently, novel design concepts would be generated due
to the creative properties of language, such as ambiguity and
duality of patterning. As an expected result, a compositional
artificial grounded language would evolve to support creative
design.
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