
Towards a Computational Reading of Emergence in Experimental Game Design

Simon Colton, Mark J. Nelson, Rob Saunders, Edward J. Powley, Swen Gaudl and Michael Cook
The MetaMakers Institute, Games Academy, Falmouth University, UK

metamakers.falmouth.ac.uk

Abstract

In any prolonged creative act, there may be moments when an
interesting and/or surprising aspect of the artefact being cre-
ated, or a related idea, emerges without prior knowledge of
the creator. Such emergent properties can be capitalised on to
drive the creative process. With the Gamika iOS app, we have
made it possible to create novel casual game levels in minutes
and hours rather than the usual days and weeks. This has en-
abled us to undertake and analyse game design sessions with
a think aloud methodology, focusing on moments of emer-
gence and how they influenced the level design. This has in
turn led us to an initial computational reading of emergence
in game design, where we imagine how an automated game
designer could recognise and take advantage of unexpected
changes in aspects such as aesthetics, gameplay and playing
strategies which arise during the creative process.

Introduction
Making novel video games is technically quite difficult, and
involves numerous skills, from graphic design to program-
ming. We are interested in democratising game design, so
that anyone and everyone can make simple games, much
like they can make simple drawings and write simple sto-
ries, then learn to add sophistication to their creations. With
the Gamika app, we have developed an iOS casual creator
(Compton and Mateas 2015) that enables users to create full
multi-level casual games directly on the device for which
they are intended. The making of even fairly simple ca-
sual games is usually a time consuming process, with the
effort often taking weeks and months. Where it is possi-
ble to use a handheld app to create games without program-
ming, to the best of our knowledge, designers are limited to:
skinning existing games, as per Playr (playr.us) or author-
ing levels in an existing game world, as per Sketch Nation
(sketchnation.com). In contrast, Gamika enables rapid de-
velopment of completely new casual games in minutes and
hours, through a method of choosing an existing game level
and then altering it until a new game emerges. As described
in the next section, the user interface to Gamika provides
access to drawing tools, generative art methods, search for
variations via random mutation and the fine-grained setting
of 284 numerical parameters to define the game mechanics
for physics-based casual games.

In Gamika, we have defined a space of casual games via

a breakdown of game levels into a set of numerical parame-
ters. The idea of mapping a space of games has some simi-
larities with systems such as VGDL (Schaul 2013) and Puz-
zleScript (puzzlescript.net). With these systems, the space of
games is mapped to a space of hierarchical code structures,
rather than a space of numerical vectors, as with Gamika.
Gamika is also set apart from VGDL and PuzzleScript by
its use of simulated physics. That is, whereas those systems
define explicit movement rules for in-game objects, Gamika
specifies only the physical properties of the objects and the
environment, from which movement emerges. This reliance
on emergence changes how the space is navigated: on one
hand, it reduces the ease of finding a specific design that
users may have in mind, but on the other, it increases the
chances of the parameters combining in unanticipated and
serendipitous (Pease et al. 2013) ways. The affordance of
this emergence and how it could be used by automated game
designers is the topic under investigation here.

The rapid development of game levels means that the cre-
ative process enabled by Gamika can be recorded and stud-
ied in short, encapsulated sessions. We describe below three
case studies whereby a novice, intermediate and expert user
of Gamika made levels for new games and used a think-
aloud methodology to capture aspects of the process and
their thoughts about the game being developed. The purpose
of the sessions was to highlight those occurrences of emer-
gence, where novel ideas for the game/level – which were
specifically not imagined in advance – were found and used
opportunistically to improve (or at least alter) the game.

Our ultimate aim is for Gamika to be accepted as an auto-
mated game designer (AGD), much in the same mould as the
ANGELINA system (Cook, Colton, and Gow 2016). To this
end, we provide some thoughts on a computational reading
of emergence, based on insights arising from the design ses-
sions. We imagine an automated game designer producing
games in such a way as to opportunistically take advantage
of emergent aspects of the game level it is producing. To
do this, we specify some required components of the AGD,
a setting within which end-to-end game design could oc-
cur, and a partial characterisation of moments of emergence,
in terms of computational analogies of the human-centric
moments seen in the design sessions. We conclude by dis-
cussing emergence from a design psychology perspective,
and we describe future directions for the Gamika project.



Figure 1: Base camp, mutation, generative art, drawing, pa-
rameter settings and game text design screens in Gamika.

The Gamika Handheld App
Gamika is an iOS application which enables users to make
entire multi-level casual games directly on their device.
Each level contains objects with simulated physical prop-
erties such as mass, restitution and velocity, within a sim-
ulated physics environment of various forces. There are
three types of objects: friends, foes and the controller –
these names simply provide useful handles as a lens through
which the user can understand and remember properties and
interactions. Determining how each type of object looks, is
spawned, is attracted to other objects (or other locations),
is affected by forces, and collides with other objects dic-
tates the physical environment. The user can also specify
how players interact with the objects, normally by tapping
and dragging the controller, friends and foes. They can also
specify how points for score, health and lives are accrued
and lost, and how levels are completed, or failed. Finally,
the user can supply some game text which provides a small
narrative about how the level should be played, and gives
background to the in-game characters.

To avoid a situation where there is an ominous blank can-
vas, users are expected to follow a pattern of: (i) choosing
an existing preset game level from the base camp which is
close to the kind of thing they might want to produce, then
(ii) modifying it until it is either a new version of the level
or an entirely different one. There are a number of design
screens which enable the user to make these modifications,
as depicted in figure 1. Firstly, the user can choose to make
alterations to the level using a dial-like interface which per-

forms random mutations on the genome of the game. The
choice of button on the dial to rotate dictates which aspect
of the level is mutated (e.g., lighting, collisions, movements,
etc.) and the amount of rotation dictates how much the ran-
dom mutation alters the current values. Secondly, the user
can choose a piece of abstract art (Colton, Cook, and Raad
2011) and/or a hand-drawn motif for the controller through
bespoke screens.

In a third set of screens, the user can specify the numer-
ical parameters which dictate (a) the look of the level, e.g.,
background image, size/colour/image for the friends/foes,
etc. (b) lighting effects, including ambient light and spot-
lights on various objects (c) how often and where friends
and foes are spawned, and how many are allowed on-screen
at any one time (d) how friends and foes move through at-
tractive and repulsive forces (e) what happens when friends,
foes and the controller collide with each other (f) six contri-
butions to counters for each of: score, lives and health, and
(g) how these counters should end the game in a win or a
loss. Further details of Gamika, including the breakdown of
game levels into component parts, and how it fits into the
wider context of hand-held casual creators for game design,
is given in (Powley et al. 2016). We concentrate here on
some case studies of the usage of Gamika, and in particu-
lar how aspects of game levels emerge from user interaction
with the design interface and the game itself.

Case Studies
Gamika empowers designers to produce games with wholly
new game mechanics, interaction mechanisms and aesthet-
ics. The speed at which this can be done means that en-
tire game design sessions can be easily recorded and anal-
ysed. In the sessions described below, we recorded video
of the iPhone/iPod screen where Gamika was being used,
with a live audio narrative by the designer, encouraged to
describe their ideas, intentions and motivations, i.e., via the
think aloud protocol (Kuusela and Paul 2000).

Designers were particularly encouraged to be aware of
unforeseen ideas that arise during the design/re-design and
playtesting of game levels. This has no doubt biased the ses-
sions towards a particular mode of creation. However, our
aim was not to prove that emergence does happen, but rather
to chart the different ways in which it can occur, in order to
suggest computational equivalents. Hence, in this context, it
was favourable to bias the designers towards seeking out and
capitalising on novelties which arise during the design and
playtesting of levels of a game. The three sessions below
represent three levels of expertise in using the Gamika App:
expert (author 1), intermediate (author 3) and novice (author
2). This setup was employed to explore the possibility of the
computational equivalent changing strategies as it becomes
more expert in using the casual creator.

Expert User
This design session was split into four sub-sessions of
roughly 30 minutes, with an overall time of 2 hours and
10 minutes. The designer produced five preliminary sketch
games and five levels of the final game, polished and tested



Figure 2: Approximate timeline for the expert game design session, showing when (p)rototypes and (l)evels of the final game
were saved, and when emergent moments A to J occurred.

sufficiently to be able to show to others, as per the notion of
curation analysis in (Colton and Wiggins 2012).

The designer originally aimed to produce a puzzle game,
where the player has to work out how best to move
the controller in order to bounce a ball into a particu-
lar position, similar to mobile games such as DropFlip
(dropflipgame.com), where the aim is to bounce a ball
into a bucket. However, towards the end of the second
sub-session, this aim was abandoned in favour of an ac-
tion game where the player must learn a skill of bounc-
ing/catching/rolling/throwing and generally cajoling the ball
with the controller, to get it into the right place at the right
time. The designer lamented that this is usual and that they
have not yet managed to design a satisfying puzzle game –
we plan to improve Gamika in light of this criticism.

In addition to the gameplay, the game text also changed
during the session. Originally the ball was labelled as food
to feed a cute character known as a ‘Bicho’ (from the Span-
ish for little animal or little devil). However, at the start of
the third session, a decision was made to change this to a nar-
rative about the killing of ravens rendered in a Gothic style,
and this was emphasised with a macabre theme running
through the levels of the final game, i.e., with game con-
trollers depicted as objects associated with death: a scythe,
a cross, a coffin, some rosary beads and a graveyard. The
following ten moments labelled A1 to J1 were recorded as
examples were aspects of the game emerged without prior
planning. These, along with the screenshots of the proto-
type and game levels produced by the expert designer are
depicted on the timeline of figure 2.

A1 5m. While attempting to place the Bicho character at
the bottom of the screen, the designer realised that it was
placed half off the screen which was not desirable, and that
it couldn’t be put in the right place. This problem was solved
by making the Bicho character attracted to the opposite side
of the screen (the top), so that it moved very slowly.

B1 22m. Playing the game made the designer realise that
the controller could collide with the Bicho character. This
wasn’t desirable, as it meant that the game could be too eas-
ily controlled that way. This led to a fix which uncovered a
new game mechanic: that passing the controller through the
Bicho character could be used to more easily solve the level.

C1 27m. The designer played the level in a new way,
which was essentially bouncing the ball repeatedly. This
gave him the idea for a new level (which was not eventually
used) where the point is to keep the bomb away from the
Bicho character, while it traversed the screen.

D1 30m. The designer played back the think aloud record-
ing from the first sub-session and, on hearing the word
“bounce” repeatedly, was given the idea of thinking of the
ball character as a bouncing bomb, rather than an item of
food. This solved the problem of the ball hitting the Bicho
being rather a violent way of feeding them, and brought in a
more suitable narrative, i.e., of destroying rather than feed-
ing. This was capitalised on by changing the Bicho charac-
ter to a Gothic raven character, making both the ball and the
raven explode on collision, and altering the game text to talk
about killing a raven rather than feeding a Bicho.

E1 44m. In the middle of attempting to design a level
where the dropping ball rolled around a semicircular con-
troller towards the raven, the designer realised that the pro-
cess of catching the ball and then throwing and/or rolling it
was more fun, as it afforded a higher level of control.

F1 46m. The designer realised that the game was too easy,
as the player could simply catch the ball and move it to be
on top of the rising raven character, hence avoiding the need
to throw/roll the ball. To solve this, they added a line to the
controller to stop it being dragged the requisite amount.

G1 49m. To fine tune the controller to encourage
the throwing mechanic, the designer reduced the part-
circumference of the semicircle. On viewing the altered con-
troller, they realised that it looked like a scythe, and decided
that this fitted the narrative of destroying the ravens well (as
the grim reaper carries a scythe). The designer changed the
game text to reflect this extra narrative element.

H1 86m. The level with a drawn coffin controller was
deemed too easy, so the designer gave the ball some random
noise and random initial direction; moved the entry point
for the ball to the coffin; and removed the right hand wall,
to increase the difficulty. To visually emphasise the random-
ness to the player, the ball colour was changed to red, and
the bouncing bomb was portrayed with more autonomy in



the game text, i.e., as less of a collaborator/tool and more of
something that had to be controlled.

I1 93m. The art image for the third level possibly gave
the designer the idea of choosing a rosary bead motif for the
controller in the fourth level (the designer wasn’t sure).

J1 108m. Accidentally tapping the bomb character ex-
ploded it, which the designer decided was not desirable.
However, when using the interface to turn this off, they
saw that another option was that tapping could reverse (tem-
porarily) the direction of the bomb. The designer tried this a
few times and decided it was an interesting game mechanic,
and kept it in the level. Tapping to reverse was made the
main control mechanic in the final (fifth) level.

Intermediate User
This design session involved a single two-hour session, dur-
ing which an intermediate designer – with some previous ex-
perience of making simple games from scratch with Gamika
– managed to create a novel game with three levels of in-
creasing difficulty. The designer started with the idea of not
making a game but attempting to implement an aquarium-
like environment as a meditative experience, or possibly a
toy. The goal was not to create a faithful simulation of fish
but rather something more akin to “seamonkeys”, by relying
on a Perlin noise field to move elements around. The early
attempts to build an aquarium-like environment proved suc-
cessful, in as far as Gamika allows, but trying to remove
an obvious controller from the screen proved unsatisfactory.
Attempting to use a minimal controller lead to a contempla-
tive game-like experience and, after some experimentation
with different ways of controlling the movement of the con-
troller and scoring the accumulation of friends and foes on
the controller, an enjoyable game emerged.

The final game, called “primordial scoop”, consists of a
large number of small elements moving around in a fluid en-
vironment. The friend and foe objects destroy each other on
contact but are immediately replaced elsewhere at a random
location. The player controls a single line that is similarly
adrift in the fluid, and the player can only affect the orienta-
tion of the line as it is moved around by the currents. When
one of the small elements touches the controller it sticks.
The goal is to collect all of the small elements onto the con-
troller within a time limit, in this case set at 2 minutes. At
the end of the session, the designer had produced three lev-
els with increasing numbers of elements, i.e., 20, 40, 60,
to test how well the game could be introduced to a novice
player and how enjoyable/frustrating the game becomes as
the number of elements to collect increases. The following
moments of emergence were observed.

A2 10m. The designer started with the general theme of
an aquarium-like experience, not necessarily a game, but
something more contemplative. Increasing the strength of
the noise field produced a nice feeling similar to many small
creatures floating in a liquid, but clearly not fish because
they are being swept around by waves. Making all of the
particles very small enhanced the feeling of having many

small sea creatures, and significantly increasing the number
of particles again made it feel like a sea of tiny creatures in
some sort of “primordial soup”. The designer noted that the
idea of a “primordial soup” was interesting and decided to
follow this direction, still with the intention of producing a
display or toy, rather than a game.

B2 21m. The designer attempted to enhance the feeling of
a “primordial soup” by making the friends and foes almost
the same colour and allowing them to stick to each other to
form large clusters. However, allowing the friends and foes
to create clusters without limit quickly ran into problems as
the physics engine became unstable. Setting collisions be-
tween friends and foes to destroy both created a pleasing
display that continued to evolve over time without the prob-
lem of the clusters getting too big too quickly.

C2 27m. Changing the appearance of friends and foes to be
as close as possible to the same colour created an interesting
movement field which was pleasing in its uniformity. How-
ever, the designer noted that the controller wasn’t doing any-
thing and looked out of place. Trying to remove the drawn
controller altogether resulted in a background artwork be-
ing shown, which was unexpected and not what the designer
wanted. Not knowing any other way to make the controller
disappear, the designer put it back and made it a similar size
and shape to the friends and foes, noting that the controller
still looked out of place, as it moved in a different way.

D2 46m. The designer added lights to some of the friends
and foes, to make an interesting visual effect. However, the
number of lights permitted was much smaller than the num-
ber of friends and foes on screen, which made the lights
that are drawn seem arbitrary. The designer changed the
behaviour of the friends and foes coming into contact with
the controller to stick to it, and tried making only the stuck
friends and foes light up. While this created an attractive
spotlight around the controller, the limit on the total number
of lights still made it seem that stuck friends and foes are be-
ing lit up at random. The designer decided to drop the idea
of any form of lighting.

E2 59m. Turning off the lights but keeping the behaviour
of the friends and foes sticking to the controller, the designer
commented that it started to feel somewhat like a game.
However, the round controller shape that the designer had
been using up to this point seemed limited and he began ex-
perimenting with other shapes. He started with a rectangle,
but settled on something very minimal and barely visible
against the background, namely a thin straight line, as the
controller almost relies on the friends and foes to attach to it
to make it visible, and the line very clearly shows how the
controller is moved around in the fluid environment.

F2 81m. The designer decided that moving the controller
directly with the finger didn’t feel right, given the floating
feel of the rest of the screen. Moving the controller towards
the finger didn’t feel right either, as it felt like too direct
control. Rotating the stick without moving it directly was
satisfying, with not too much control, but enough to kind of



swim about, by bouncing off the walls, etc.

G2 96m. Having decided that gathering up the friends and
foes through an indirect control mechanism had a good feel
to it, the designer turned to the question of scoring. Some
sort of countdown timer initially seemed appropriate. The
designer started by counting the largest clusters, but this
meant the goal was to create large clusters which again led
to physics engine instability. While this can look interest-
ing, the engine eventually slows down gameplay to a crawl,
so a way incentivising the player to reduce the size of clus-
ters was needed. The designer’s first attempt was to change
the scoring mechanism such that the game counted +1 for
friends stuck to the controller and -1 for foes stuck to the
controller, similar to another game designed with Gamika,
called “Solar”. The designer made the player’s aim to be
having a score of zero at the end of the time limit, which
meant either building up perfectly equal amounts of friends
and foes stuck to the controller, or trying to keep the con-
troller clean by destroying friends with foes and foes with
friends. The designer noted that this felt like a good way
to play towards the strengths of the system in terms of the
physics engine and appealed to the idea of keeping the game
cooperative with the environment.

H2 111m. After playtesting the scoring mechanism, the
designer found he didn’t fully understand how scoring of
clusters worked. Hence it was hard to figure out how to
progress, because in many instances, picking up a new friend
or foe onto a cluster on the controller didn’t affect the score
as expected. Changing the scoring mechanism to count all of
the captured particles, and carefully controlling the number
of friends on foes on screen, so that they are fixed from the
beginning of the game and have to be “mopped up”, made
for much more satisfying gameplay.

I2 117m. Experimenting with different numbers of friends
and foes produced a number of levels of increasing diffi-
culty, suggesting that the game mechanic can be tailored to
different skill levels.

Reflecting on the game, the intermediate designer noted
that while the mechanic is simple and easily grasped with
few elements on screen, the movement control required pa-
tience and working with the fluid game environment, rather
than against it. The subtlety of control reminded the de-
signer of some of the earliest arcade games, e.g., Lunar
Lander, requiring a “light touch”. The designer suggested
a number of extensions to the game beyond increasing the
number of elements, e.g., changing the shape and size of the
controller, changing the stickiness of the controller, adding
obstacles or increasing the number of types of elements on
screen with different reactions between different types.

Novice User
This design session consisted of a single one-hour session,
in which a novice designer produced a new game for the
first time. The designer had previously used Gamika for one
warm-up design session of 20 minutes, in which they pro-

Figure 3: Screenshots from the final game design of the in-
termediate designer showing a typical state of play from the
beginning and towards the end of a game.

duced a new level for an existing game, in order to gain ba-
sic familiarity with the interface. The designer started with
the idea of trying to implement Flappy Bird within Gamika.
It seemed unlikely that it would be possible to do so in a
faithful way, but the idea served as a starting goal. As the
initial attempts ran into difficulties, the game morphed and
ended up not being at all similar to Flappy Bird, in fact much
more dissimilar than Gamika actually requires (it is possible
to implement something closer to Flappy Bird in Gamika,
but that wasn’t a hard goal, so was abandoned when other
design directions presented themselves).

The final game produced is dimly lit, with the player nav-
igating glowing balls (which light the way) past obstacles
without touching them. The main element retained from
the Flappy Bird starting point is navigating left to right past
gate-type obstacles without touching them. But rather than
a fast-tapping style of gameplay, it has a steady-hand feel, as
the player tries to avoid pulling the ball too close to a wall;
the darkness meanwhile adds a second layer of challenge.
The following moments of emergence were observed.

A3 15m. Through trial and error, the designer reached
an interpretation of some features of Flappy Bird. Since
Gamika has no side-scrolling, the original design of a sin-
gle bird navigating a series of obstacles was not possible;
instead, this interpretation had a fixed set of obstacles, with
a series of balls spawning to navigate them in turn. The goal
that obstacles should be avoided was implemented by hav-
ing balls stick to the obstacles if they touch. However, there
was not yet any control, and the designer was unable to fig-
ure out how to implement the core mechanic of Flappy Bird:
gravity pulling the bird down while tapping flaps it upwards,
at the same time as the bird moves at constant velocity hor-
izontally. Instead, after browsing the options, he settled on
controlling the ball in a non-tapping way, by having it pulled
towards the finger touch position.



B3 21m. The designer noticed that having multiple balls
on screen at the same time makes gameplay difficult, since
they’re all controlled with the same touch position simulta-
neously, and what’s good for one may be wrong for the oth-
ers. Options considered to address this were to either design
levels around this synchronised control challenge, or limit
the level to one non-stuck ball on screen at a time. The latter
option was chosen, at least for a first level, reducing spawn
rate so only one non-stuck ball is on screen at a time.

C3 36m. After experimenting with spawning positions, ve-
locities, and obstacle design, the designer decided the game
needed different aesthetics. Not sure what to do, he used
Gamika’s random mutation dial to try a different lighting ar-
rangement. The game became dimly lit and the balls gave
off light. The designer hadn’t considered using lighting as
part of the game’s challenge (versus an aesthetic element),
but the new lighting had the potential to make traversing the
obstacles difficult in an interesting way, so he kept it.

D3 47m. Playing the game, the designer noticed that if
a ball is stuck transitively (stuck to another stuck ball, but
not directly to an obstacle), the game stops progressing, be-
cause no new balls are spawned. He looked to see if there
was a way to excluded transitively stuck balls from the limit
that inhibits spawning, but there didn’t seem to be, so he re-
moved the possibility of transitively stuck balls, by making
ball-ball interactions produce a bounce.

E3 52m. The game became possibly too easy, since bounc-
ing off stuck balls could provide a cushion to keep off the
obstacles without having to really thread between them. The
designer tried to compensate for this by making the level al-
most pitch-black, with only local light from the balls guiding
the way, giving it an exploration-like element.

F3 60m. The designer converted a 15-second gameplay
extract into an animated GIF to post to Twitter. He acci-
dentally produced a version with heavy posterisation arte-
facts, due to using the default GIF web colour palette with
a limited number of greys, as shown in Figure 4. This for-
tuitously produced a game (or rather, hypothetical gameplay
video snippet) that much more closely matched the feel he
had been hoping for with the dark level lit only by the aura
of the ball: the discrete lit/unlit area and the cartoon-type
shading works much better than the realistic lighting in the
actual game. Gamika doesn’t currently support such shader
effects, however, so it was not possible to go back and im-
plement this look in the game.

A Computational Reading of Emergence
The following is a hypothetical description of how an au-
tomated game designer (AGD) could use the Gamika soft-
ware – either through alteration of the genome directly (a
JSON file) or through the user interface – to produce a novel
game, capitalising on emergent properties. To produce this,
we have analysed the emergent moments in the case studies
above, to provide potential computational analogies of them.

Figure 4: Screenshots from the final game design of the
novice designer. Left as it appears in Gamika, and right after
being accidentally posterised in a way fortuitously beneficial
to the design.

Required Components of the AGD
We assume that the AGD has a suitable automated playtester
(AP) which can try out various strategies for playing a game,
and that the AGD has access to information about the com-
plexity of each strategy, as suggested by (Nelson 2011;
Nielsen et al. 2015). We also assume that the AGD has a
parameter change predictor module (PCP) which can pre-
dict how parameter settings changes will alter gameplay in
Gamika levels. Another requirement for the computational
reading is that the AGD has a fun predictor (FP), with abil-
ities to predict the level of fun that players might experi-
ence with certain game mechanics, levels and entire casual
games. It is beyond the scope of this paper to describe a
computational model of fun, but we would assume that it
involves some level of novelty, some level of player con-
trol, some interesting physical attributes, etc. In the arena
of casual gaming, the notion of ‘juiciness’ is related to fun,
as per the 64th lens of gaming described in (Schell 2014).
Our final requirement for the AGD is a game analyser (GA)
which contains a machine vision module (MV) that is able
to watch games being played, and analyse data from auto-
mated playtesting, to inform FP and PCP. We acknowledge
that these requirements for an AGD are well beyond the cur-
rent state of the art.

A Setting for End-to-End Game Design
The following is a rough approach to automated game gen-
eration, which stands as a best-case scenario (albeit not
for emergence), wherein a designer could reproduce a well
known game level in Gamika. This acts as a setting for the
computational reading of emergence.
• Choose an existing game. A database of existing casual
game levels, not necessarily implemented in Gamika, from



which one, EL, is chosen randomly or in some other sys-
tematic way. For instance, the database of Atari ROM games
described in (Bellemare et al. 2013) would provide a suit-
able database.
• Analyse the game. The GA module analyses game code,
assets, gameplay video, and machine-readable descriptions
(e.g., VGDL) of EL, and, if possible, the AP module
playtests the game to provide understanding of EL.
• Choose a Gamika level as the basis for the new game.
Use the understanding of EL to compare to similar pre-
calculated analyses of the levels in the Gamika base camp
to choose the nearest neighbour, BC, to EL as the basis for
the Gamika version.
• Map game elements. Produce a mapping from the game
elements of EL to the friends, foes and controller objects
of BC. Similarly map the initial placement of objects and
the spawning regimes of EL to those of BC, in addition to
the set of physical interactions such as collisions and move-
ments. Finally, map the progress (score, health, lives) mech-
anisms from EL to BC, and do likewise for the visual and
audio aesthetic elements.
• Alter the game appropriately. Where the mapped ele-
ments of EL and BC differ, choose the most appropriate
parameterisation of the appropriate aspect of the level, and
make the relevant change to BC.

Emergent Moments
In some cases, although probably quite rarely, it may be
possible to start with an existing game idea and produce a
suitably faithful version on Gamika. For instance, clones of
asteroids, space invaders and frogger have been made by a
human designer with Gamika. However, in our experience,
producing even a poor version of an existing game is usually
impossible because of the limitations of essentially finding
a game in a space, rather than coding a specific solution.
Hence, games designed with Gamika tend to emerge rather
than being systematically constructed, so that the designer
ends up with an interesting game, albeit not the one they
had in mind originally. Below, we collate some of the emer-
gent moments described above, and provide a computational
equivalent, to provide some inspiration for a more formal
model of how software could capitalise on emergence.

A1 A2 A3 Using GA and PCP to realise that aspects
of EL are not possible, choose an alternative due to lim-
itations in the expressivity of the levels allowable through
the interface. Such a substitution might be done automati-
cally through qualitative reasoning about space and move-
ment (Forbus 1983; Cavazza et al. 2014).

B1 If inheriting from an existing Gamika game leaves
residue parameters which produce unexpected gameplay, as
assessed by GA, then: if FP predicts fun, keep the settings,
otherwise turn off the settings which make that gameplay
happen, as predicted by PCP.

C1 E2 Get the AP to undertake experimental gameplay
not related to the objectives of the level. If FP predicts that
this is more fun than currently, make that gameplay part of

the objectives of the level.

D1 B2 Have the GA textually describe physical proper-
ties of game objects. Use these keywords to find facts or
themes from an existing knowledge base, and alter game
assets to fit the narrative. This could build on work in au-
tomated game skinning and theming (Nelson and Mateas
2008; Cook and Colton 2014).

E1 E2 Get the AP to once again experiment with strate-
gies, and identify one which has a stronger level of control
for AP or is predicted by FP to be more fun. Change the
game to require the usage of that strategy, using PCP to sug-
gest the alterations.

F1 G2 B3 E3 If AP tests of different strategies finds
one which is too easy (in an obvious sense such as finishing
quickly or maximising scores) or the level is too hard or ob-
scure, e.g., it’s not obvious how progress is being achieved,
then use PCP to choose parameter changes to fix the prob-
lem – using AP to re-test the altered levels.

G1 Use MV to extract parts of a game visualisation that
resemble some real-world object, then employ the AGD to
add information about that object in the game text.

C3 Rely on serendipity to jump to a different part of the
search space for some non-critical aspect of the game, e.g.,
the visual aesthetics, and use GA and FP to see if the changes
alter the game mechanics and/or player enjoyment.

F3 Changes to the game’s presentation layer (such as light-
ing and shading) modify the difficulty and experience, but
only if the game is perceived visually via the screen; to no-
tice this kind of effect, the AP module would need to play
the games visually given only video of the screen, not given
semantic information such as ball positions and velocity.

Discussion, Conclusions and Future Work
The Mechanic Miner module described in (Cook et al. 2013)
as part of the ANGELINA project (Cook, Colton, and Gow
2016) encouraged emergence in automated game design by
the software altering games at code level in order to assign
a novel game mechanic to a player action, e.g., inversion of
gravity. ANGELINA capitalised on this by building a level
which could only be solved if the player employed the new
mechanic (as checked by an automated playtester). In (Cook
et al. 2013), the process stopped after a single new mechanic
was introduced, but we could imagine an iterative process
where more code changes were added and the game slowly
emerged as a result.

The Gestalt psychologists recognised that emergence was
an important part of human perception (Sternberg 2003).
Studies of designers have explored the role of emergence
in the design process, Gero included ‘emergence’ as one
of the five core computational processes for creative design
(Gero 1994). As a way of characterising emergence in de-
sign, Brown (1998) suggested that a reasonable definition
of emergence in design might be that “An identifiable de-



sign property which has not been explicitly anticipated or
explicitly represented in the current (partial) design can be
said to be emergent.” The requirement for a property to not
be explicitly anticipated or explicitly represented goes some
way to ensuring that an emergent property has the quality
of being ‘surprising’ that is characteristic of emergence as
typically used by designers when discussing their process.

In line with the Function-Behaviour-Structure framework
for design processes, Gero has argued that there are three
classes of emergence in designing: emergent structures,
emergent behaviours and emergent functions. Emergent
structures are the most obvious form, e.g., the perception
of illusory contours in drawings suggesting structure that
has not been explicitly represented. In the design sessions
above, the emergence of visual features, such as the novice
designer’s accidental posterisation, could be reflected upon
and integrated back into future game development.

Emergent behaviours are also familiar from the visual do-
main, becoming evident in the qualities such as groupings,
alignment and symmetry, as studied by the Gestalt psychol-
ogists, as well as higher level features such as movement,
rhythm and balance (Arnheim 1974). In the context of the
game design sessions recorded, this might be recognised
in the need of the intermediate designer to maintain a cer-
tain rhythm in the movement of the controller in relation to
the friends and foes, the recognition of this constraint then
formed the basis for the designer’s choice of control mecha-
nism for the player. Emergent functions require the discov-
ery of unexpected uses, e.g., in the context of the sessions
discussed above, this might be characterised as the use of
the walls by the intermediate designer as a means of propul-
sion when playing the game, or the recognition of the sym-
bolic significance of the scythe-like controller by the expert
designer. Emergent functions brings with it a need for the
design agent to ground their expectations of the game world
in use, and possibly requiring them to bring in experience
from outside the game world, and as such may require highly
competent and flexible automated game players.

The computational reading of emergence in game design
given here is currently very sketchy, and it will need to be
fleshed out in the context of the emergent structures, be-
haviours and functions, and the context of serendipitous dis-
coveries (Pease et al. 2013). As we develop Gamika as
an automated game designer, we plan to add the modules
required for emergence described above. We have already
started work on the parameter change predictor, using deci-
sion tree learning to suggest parameter ranges for fine-tuning
of the parameters. We have also implemented an automated
playtester module which, in principle, enables any level to
be played on the device, but in practice is not yet generic
enough. We aim for Gamika to exploit emergent properties
of games it is designing, to automatically produce interest-
ing and engaging games of cultural and commercial value.

Acknowledgments

This work was funded by EC FP7 grant 621403 (ERA Chair:
Games Research Opportunities).

References
Arnheim, R. 1974. Art and Visual Perception: A Psychology of the
Creative Eye. University of California Press.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013.
The arcade learning environment: An evaluation platform for gen-
eral agents. Journal of Artificial Intelligence Research 47:253–279.
Brown, D. C. 1998. Functional emergence: A position paper. In
Proceedings of the International Conference on Artificial Intelli-
gence in Design.
Cavazza, M.; Hartley, S.; Lugrin, J.-L.; and Le Bras, M. 2014.
Qualitative physics in virtual environments. In Proceedings of the
International Conference on Intelligence User Interfaces, 54–61.
Colton, S., and Wiggins, G. 2012. Computational Creativity: The
final frontier? In Proceedings of the European Conference on Ar-
tificial Intelligence.
Colton, S.; Cook, M.; and Raad, A. 2011. Ludic considerations of
tablet-based evo-art. In Proceedings of the EvoMusArt Workshop.
Compton, K., and Mateas, M. 2015. Casual creators. In Proceed-
ings of the International Conference on Computational Creativity.
Cook, M., and Colton, S. 2014. Ludus ex machina: Building a 3d
game designer that competes alongside humans. In Proceedings of
the International Conference on Computational Creativity.
Cook, M.; Colton, S.; Raad, A.; and Gow, J. 2013. Mechanic
miner: Reflection-driven game mechanic discovery and level de-
sign. In Proceedings of the EvoGames Workshop.
Cook, M.; Colton, S.; and Gow, J. 2016. The ANGELINA
videogame design system, parts I and II. IEEE Trans. Comp. Intell.
AI Games.
Forbus, K. D. 1983. Qualitative reasoning about space and motion.
In Gentner, D., and Stevens, A. L., eds., Mental Models. Psychol-
ogy Press. 53–74.
Gero, J. S. 1994. Computational models of creative design pro-
cesses. In Dartnall, T., ed., AI and Creativity. Kluwer. 269–281.
Kuusela, H., and Paul, P. 2000. A comparison of concurrent and
retrospective verbal protocol analysis. American Journal of Psy-
chology 113(3):387–404.
Nelson, M. J., and Mateas, M. 2008. An interactive game-design
assistant. In Proceedings of the International Conference on Intel-
ligent User Interfaces, 90–98.
Nelson, M. J. 2011. Game metrics without players: Strategies for
understanding game artifacts. In Proceedings of the AIIDE Work-
shop on Artificial Intelligence in the Game Design Process, 14–18.
Nielsen, T. S.; Barros, G. A. B.; Togelius, J.; and Nelson, M. J.
2015. Towards generating arcade game rules with VGDL. In Pro-
ceedings of the IEEE Conference on Computational Intelligence
and Games.
Pease, A.; Colton, S.; Ramezani, R.; Charnley, J.; and Reed, K.
2013. A discussion on serendipity in creative systems. In Proceed-
ings of the International Conference on Computational Creativity.
Powley, E.; Colton, S.; Gaudl, S.; Saunders, R.; and Nelson, M.
2016. Semi-automated level design via auto-playtesting for hand-
held casual game creation. In Proceedings of the IEEE Conference
on Computational Intelligence and Games.
Schaul, T. 2013. A video game description language for model-
based or interactive learning. In Proceedings of the IEEE Confer-
ence on Computational Intelligence and Games.
Schell, J. 2014. The Art of Game Design: A Book of Lenses. CRC
Press, 2 edition.
Sternberg, R. 2003. Cognitive Psychology. Thomson/Wadsworth.


