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Abstract. This paper present a novel approach to modelling creative societies using cu-
rious design agents. The importance of modelling the social aspects of creativity are first
presented and a novel agent-based approach is developed. Curious design agents are intro-
duced as an appropriate model of individuals in a creative society. Some of the advantages
of using curious design agents to model creative societies are discussed. Results from some
initial investigations into self-organisation within creative societies using the model are
given. This paper concludes by discussing some related work and exploring possible direc-
tions for future work.

1 Introduction

Creativity is often described as the ability to produce work that is both novel
and appropriate [1] and researchers generally acknowledge that creativity must be
defined differently at the level of the individual and the level of society [2, 3] but
the relationship between individual and social creativity is complex.

An individual may determine that their work is creative independently of the
judgement of others, but for it to be generally recognised as a creative work, other
members of the society must agree that it is significantly novel and appropriate for
a particular domain. In addition, an individual’s determination of what is creative
is informed by their experiences that are in turn based in the social and cultural
environment within which they are situated. Consequently, we can say that cre-
ativity, at whatever level it is determined, is ascribed through a dynamic process
of interactions between an individual, their society and the domains within which
they work. This dynamic process of interactions is nicely captured by Csikszent-
mihalyi’s systems view of creativity [4], illustrated in Figure 1.

In Csikszentmihalyi’s view, creativity can only be discussed in terms of the
creative system that extends beyond any particular individual and includes the
socio-cultural context within which the individual works. Csikszentmihalyi identi-
fied three important components of a creative system; firstly there is the person
engaged in the creative work referred to as the individual, secondly there is a social
component called the field, and thirdly there is a cultural component called the
domain. Creativity can be characterised by the following cycle of interactions; an
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Fig. 1: Csikszentmihalyi’s Systems View of Creativity

individual takes some knowledge from the domain and produces a work that is as-
sessed by the field and if it is deemed to be creative the work, and any knowledge
inherent in the work, is added to the domain.

The great majority of the research developing computational models of cre-
ativity has followed the lead of Newell et al. [5] and has focussed on developing
computational models of creative processes such as divergent thinking, analogy
making, and pattern recognition. Based the systems view of creativity, Csikszent-
mihalyi has questioned the validity of this approach [4], arguing that the these
computational models cannot be said to model creativity without interaction with
a field and its associated domain.

This paper presents a computational framework for studying the emergence of
individual and social creativity within multi-agent systems based on the systems
view of creativity. The goal of this research is to explore some of the interactive
processes that occur within creative societies and how they might affect judgements
of creativity.

2 A Framework for Modelling Creative Societies

The framework presented here provides an approach to developing models of so-
cial creativity based on Csikszentmihalyi’s systems view. Previous work by Liu
[6] recognised the need for a unified framework for modelling creativity. Liu’s
dual generate-and-test framework provided a synthesis of the personal and socio-
cultural views of creativity in a single model. Liu proposed that existing computa-



tional models of personal creativity complemented computational models of social
creativity by providing details about the inner workings of the creative individ-
ual missing from the models of the larger creative system. Liu proposed the dual
generate-and-test model of creativity as a synthesis of Simon et al’s generate-and-
test model of creative thinking [5] and Csikszentmihalyi’s systems view.

The dual generate-and-test model of creativity encapsulates two generate-and-
test loops: one at the level of the individual and the other at the level of society. The
generate-and-test loop at the individual level, illustrated in Figure 2(a), provides
a model of creative thinking, incorporating problem finding, solution generation
and creativity evaluation. The socio-cultural generate-and-test loop models the
interactions among the elements of Csikszentmihalyi’s systems view of creativity,
as illustrated in Figure 2(b). In particular, it captures the role that the field plays
as a social creativity test; ensuring that artefacts that enter into the domain are
considered creative by more that just its creator. The combined dual generate-
and-test model of creativity is illustrated in Figure 2(c).
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Fig. 2: Liu’s Dual Generate-and-Test framework for building models of creative systems.

A literal implementation of Liu’s model requires separate processes to model
the individual and social creativity test. This can be a pragmatic approach to
adding a model of social factors to existing models of individual creativity and it
is a viable solution for modelling some aspects of creativity, as demonstrated by



the computational model developed by Gabora to study the memetic spread of
innovations through a simulated culture Gabora [7].

The framework presented here takes a different approach, instead of imple-
menting the social creativity test as a monolithic function, it distributes the social
creativity test across all the individuals that constitute the field. The social cre-
ativity test is modelled through the communication of artefacts and evaluations of
their creativity between individuals. An illustration of two individuals communi-
cating artefacts and evaluations is given in Figure 3(a).
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(b) A model of a creative system using agents.

Fig. 3: The framework for modelling creative societies using agents.

In the interaction illustrated in Figure 3(a), Agent A communicates an artefact
that it considers to be creative, i.e. that passes its personal creativity test, to Agent
B. Agent B evaluates the artefact according to its own personal creativity test and
sends its evaluation back to Agent A. Each agent’s evaluation of an artefact is
affected by the traits of the individual, e.g. its preference for novelty, and its
experiences, e.g. other artefacts it has evaluated.

Through the communication of evaluations, Agent B can affect the generation
of future artefacts by Agent A by rewarding Agent A when it generates artefacts
that Agent B considers to be creative. More subtly, Agent A can affect the personal
creativity test of Agent B by exposing it to artefacts that Agent A considers to
be creative, because the evaluation of creativity involves an evaluation of novelty,
Agent A affects a change in Agent B’s notion of creativity by reducing the novelty
of the type of artefacts that it communicates. By exposing Agent B to artefacts
that Agent A considers to be creative it can alter Agent B’s evaluation of novelty
and hence creativity.



To implement the social creativity test as a collective function of individual
creativity tests a communication policy is needed. A simple communication pol-
icy would be for agents to communicate a product when their evaluation of that
product is greater than some fixed threshold. To complete the implementation of
the field as a collection of individuals, the individuals must be given the ability to
interact with the domain according to some domain interaction policy. A simple
domain interaction policy would follow the communication policy above and allow
agents to add products of the generative process if the personal creativity evalu-
ation is greater than a domain interaction threshold with the restriction that no
individual is allowed to submit their own work to the domain. Thus, at least one
other agent must find an individual’s work creative before it is entered into the
domain.

The individual, agent-centric, evaluations of creativity are key to the framework
described here and permit the emergence of social definitions of creativity as the
collective function of many individual evaluations. Without agent-centric evalua-
tions of creativity, or at least interestingness, the collection of agents would simply
represent parallel searches of the same design space. Curious design agents provide
the necessary evaluations of creativity for this framework to be implemented.

2.1 Curious Design Agents

A curious design agent embodies a model of curiosity that uses a learning system
called a novelty detector [8, 9]. A novelty detector can determine the novelty of
a new input with respect to all of its previous inputs as a function of the errors
generated when it attempts to classify the new input against one of its existing
prototypes. Using a novelty detector, curious design agents are able to determine
the novelty of new artefacts as they are produced. The novelty of each new work
is measured as the distance between it and the nearest matching prototype, where
the distance can be any measure of dissimilarity between a new work and an
existing prototype, in the implementation that follows the distance is defined as
the Euclidean distance between vectors representing a new work and the closest
matching prototype.

The model of curiosity used by the curious design agents transforms the value of
novelty determined by the novelty detector into a measure of interest by applying
a “hedonic function”. The hedonic functions used in the implementation are based
on the Wundt Curve that Berlyne [10] used as a model for the typical reactions that
animals and humans display in the presence of novel situations. A Wundt Curve
for the determining the hedonic value, i.e. interest, from novelty is illustrated in
Figure 4 as the combination of a reward function and a punishment function for
discovering some novel work. Using a Wundt Curve to calculate interest, curious
design agents favour works that are similar-yet-different to those that have been



experienced before. By changing the value of novelty at which the hedonic function
is at its maximum, the agents can differ in how similar a new work must be for it
to be considered interesting and therefore potentially creative.
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Figure 3. The Wundt Curve: the hedonic function used to 

calculate interestingness. 

The Law of Novelty 
We investigated the effects of the search for novelty, by producing 

agents with different hedonic functions. The aim was to show that 

agents are not recognised as creative when they fail to innovate 

inappropriately. Agents can innovate inappropriately either by 

producing “boring” images that are too similar to ones previously 

experienced by other agents, or by producing “radical” images 

that are too different for other agents to appreciate. 

We have simulated both types of inappropriate innovation in a 

single simulation. For this experiment we created a group of 

agents most of whom, agents 0-9, shared the same hedonic 

function, i.e. the same preference for average novelty (N=11). 

Two of the agents have quite different novelty preferences. One, 

agent 10, has a preference for low amounts of novelty (N=3) and 

the other, agent 11, has a preference for high amounts of novelty 

(N=19). Agents with a lower novelty preference tend to innovate 

at a slower rate than those with a higher hedonic preference. The 

results of the simulation are presented in Table 2. 

 

Table 2. The attributed creativity for a group of agents with 

different preferences for novelty. 

Agent 

ID 

Preferred 

Novelty 

Attributed 

Creativity 

0 N=11 5.43 

1 N=11 4.49 

2 N=11 4.50 

3 N=11 3.60 

4 N=11 4.48 

5 N=11 1.82 

6 N=11 6.32 

7 N=11 8.93 

8 N=11 10.72 

9 N=11 5.39 

10 N=3 0.0 

11 N=19 0.0 

 

Figure 4 shows how the network of communication links that has 

developed between agents that communicate artworks and 

evaluations on a regular basis excludes the two agents with 

different hedonic functions. In the screenshots of the running 

simulation the squares represent agents; the images in each square 

shows the currently selected genetic artwork for that agent, the 

number above each agent shows its attributed creativity, and the 

lines between agents indicate the number of rewarded 

communications between pairs of agents. 

 

 

 

Figure 4. Screenshot of a simulation demonstrating the 

emergence of the Law of Novelty. 

The results show the agents with the same preference for novelty 

to be somewhat creative according to their peers, with an average 

attributed creativity of 5.57. However, neither agent 10, with a 

preference for low amounts of novelty, nor agent 11, with a 

preference for high degrees of novelty, received any credit for 

their artworks. Consequently none of the artworks produced by 

these agents were saved in the domain for future generations. 

When these agents expired nothing remained in the system of 

their efforts. 

Fig. 4: The Wundt Curve.

The autonomy of curious design agents for determining what is interesting, and
therefore potentially creative, is the key to adapting Liu’s dual generate-and-test
model to the study of emergent notions of creativity. This approach substitutes
the monolithic social test of creativity found in Liu’s model with a distributed
agreement that emerges from the communication of individuals.

3 Experiments and Results

This section describes some results with an implementation of the framework de-
scribed above. In this implementation the domain consists of “genetic artworks”
[11]. Genetic artworks are images that are produced by evaluating an evolved pro-
gram, typically a Lisp expression, at each (x, y) co-ordinate over the plane of the
image. An example of a genetic artwork is shown in Figure 5(a) together with the
evolved Lisp expression that generated the image.

The curious design agents in this implementation use an interactive evolution-
ary art system based on the one developed by Witbrock and Reilly [12]. The images
produced by the evolutionary system are converted into a vector that represents
the contrast values of the pixels in the image. The vector is assessed using a nov-
elty detector based on a self-organising map (SOM) [13] that provides a measure of
each image’s novelty whilst at the same time adapting the prototypes represented
in the SOM to take into account the new images.



(a) Genetic Artwork

(mod (iexp (mod (* (iexp (isin (* k x_iy_jx_ky))) (A1

(floor (iexp (conj golden))) (/ (/ x_iy (/ (exp (iexp

(/ x_iy (imax (iexp (rolL (iexp (* (conj golden) (normp

(exp (iexp (isin (/ j (* (floor x_iy_jx_ky) (+ i (conj

x_iy)))))))))))) (inv x_iy))))) (floor (exp (iexp (isin

(* k x_iy_jx_ky))))))) j))) (mod (iexp (conj golden))

(conj golden)))) (mod (* (/ (+ i (floor (/ j (/ (exp

(iexp (/ x_iy (imax (iexp (rolL (iexp (* (conj golden)

(normp (exp (iexp (isin (/ j (* (floor x_iy_jx_ky) (+

i (conj x_iy)))))))))))) (inv x_iy))))) (iexp (exp (iexp

(isin (* k x_iy_jx_ky))))))))) j) (inv x_iy)) (/ golden

(/ (/ x_iy (/ (exp (iexp (/ x_iy (imax (iexp (rolL (iexp

(* (conj golden) (normp (exp (iexp (isin (/ j (* (floor

x_iy_jx_ky) (+ i (conj x_iy)))))))))))) (inv x_iy)))))

(iexp (exp (iexp (isin (* k x_iy_jx_ky))))))) j))))

(b) Lisp Expression

Fig. 5: A genetic artwork and the Lisp expression that was evaluated at every (x, y) co-ordinate in the
image to produce it where the x co-ordinates and y co-ordinates are in the range -1 to 1.

For the sake of simplicity, and to demonstrate the effects of different novelty
evaluations on creative societies, all genetic artworks are assumed to be appro-
priate, i.e. any artworks that can be produced using the interactive evolutionary
system are assumed to be acceptable instances of genetic artworks that can po-
tentially be added to the domain.

3.1 The Law of Novelty

In “The Clockwork Muse” [14] Martindale presented an extensive investigation
into the role that individual novelty-seeking behaviour played in literature, music,
visual arts and architecture. He concluded that the search for novelty exerts a sig-
nificant force on the development of styles. Martindale illustrated the influence of
the search for novelty by individuals in a thought experiment where he introduced
“The Law of Novelty”. The Law of Novelty forbids the repetition of word or deed
and punishes offenders by ostracising them. Martindale argued that The Law of
Novelty was merely a magnification of the reality in creative fields. Some of the
consequences of the search for novelty are that individuals that do not innovate
appropriately will be ignored in the long run and that the complexity of any one
style will increase over time to support the increasing need for novelty.

The following experiments were designed to study the effects of the search for
novelty in creative societies modelled as curious agents that have hedonic func-
tions with different preferred novelty values. The preferred novelty of each agent is
expressed as a value N that indicates the amount of novelty associated with peak
interest in the agent’s hedonic function. In this implementation, N ranges from 0



to 32; this is equal to the range of the potential classification error generated by
the novelty detectors used.

Agent ID Preferred Attributed
Novelty (N) Creativity

0 11 5.43
1 11 4.49
2 11 4.50
3 11 3.60
4 11 4.48
5 11 1.82
6 11 6.32
7 11 8.93
8 11 10.72
9 11 5.39

10 3 0.00
11 19 0.00

(a) The attributed creativity be-
tween agents.

defined as the Euclidean distance between the vectors 

representing the new image and the closest matching prototype in 

the 1024 dimensional input space.  The novelty values reported in 

the remainder of this section are the raw novelty values, i.e. the 

values of output by the best matching neuron of the neural 

network. For the size of image used these values range between 

N=0 and N=32, with N=0 being an exact match and N=32 being a 

complete mismatch. 

The model of curiosity used by the curious design agents in The 

Digital Clockwork Muse also incorporates a “hedonic function” 

that transforms novelty into a measure of interestingness. The 

hedonic functions used in The Digital Clockwork Muse are based 

on the Wundt Curve that Berlyne [1] used as a model for the 

typical reactions that animals and humans display in the presence 

of novel situations. The Wundt Curve is illustrated in Figure 3 as 

the combination of a reward and punishment functions. 

Using Wundt Curve hedonic functions the curious design agents 

in The Digital Clockwork Muse all favour artworks that are 

similar-yet-different to those that have been seen before, however, 

the agents differ in how similar a new artwork must be for it to be 

considered highly interesting and therefore potentially creative. 

The preferred novelty of each agent is expressed as a value N that 

indicates the amount of novelty associated with peak interest in 

the Wundt Curve. In The Digital Clockwork Muse, N ranges from 

0 to 32; this is equal to the range of the potential classification 

error generated by the novelty detectors used. 
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Figure 3. The Wundt Curve: the hedonic function used to 

calculate interestingness. 

The Law of Novelty 
We investigated the effects of the search for novelty, by producing 

agents with different hedonic functions. The aim was to show that 

agents are not recognised as creative when they fail to innovate 

inappropriately. Agents can innovate inappropriately either by 

producing “boring” images that are too similar to ones previously 

experienced by other agents, or by producing “radical” images 

that are too different for other agents to appreciate. 

We have simulated both types of inappropriate innovation in a 

single simulation. For this experiment we created a group of 

agents most of whom, agents 0-9, shared the same hedonic 

function, i.e. the same preference for average novelty (N=11). 

Two of the agents have quite different novelty preferences. One, 

agent 10, has a preference for low amounts of novelty (N=3) and 

the other, agent 11, has a preference for high amounts of novelty 

(N=19). Agents with a lower novelty preference tend to innovate 

at a slower rate than those with a higher hedonic preference. The 

results of the simulation are presented in Table 2. 

 

Table 2. The attributed creativity for a group of agents with 

different preferences for novelty. 

Agent 

ID 

Preferred 

Novelty 

Attributed 

Creativity 

0 N=11 5.43 

1 N=11 4.49 

2 N=11 4.50 

3 N=11 3.60 

4 N=11 4.48 

5 N=11 1.82 

6 N=11 6.32 

7 N=11 8.93 

8 N=11 10.72 

9 N=11 5.39 

10 N=3 0.0 

11 N=19 0.0 

 

Figure 4 shows how the network of communication links that has 

developed between agents that communicate artworks and 

evaluations on a regular basis excludes the two agents with 

different hedonic functions. In the screenshots of the running 

simulation the squares represent agents; the images in each square 

shows the currently selected genetic artwork for that agent, the 

number above each agent shows its attributed creativity, and the 

lines between agents indicate the number of rewarded 

communications between pairs of agents. 

 

 

 

Figure 4. Screenshot of a simulation demonstrating the 

emergence of the Law of Novelty. 

The results show the agents with the same preference for novelty 

to be somewhat creative according to their peers, with an average 

attributed creativity of 5.57. However, neither agent 10, with a 

preference for low amounts of novelty, nor agent 11, with a 

preference for high degrees of novelty, received any credit for 

their artworks. Consequently none of the artworks produced by 

these agents were saved in the domain for future generations. 

When these agents expired nothing remained in the system of 

their efforts. 

(b) Screenshot of the running simulation.

Fig. 6: The Law of Novelty simulated within a single field of agents with different preferences for novelty.

In the first experiment a group of 12 agents were created. Ten of the agents,
agents 0–9, shared the same hedonic function, i.e. the same preference for novelty
(N=11). Two of the agents were given quite different novelty preferences. One,
agent 10, was given a preference for low amounts of novelty (N=3) and the other,
agent 11, was given a preference for high amounts of novelty (N=19).

Figure 6(b) is a screenshot of the running simulation; the squares represent
agents, the images in each square shows the currently selected genetic artwork for
that agent, the number above each genetic artwork shows its attributed creativ-
ity, and the lines between agents indicate the communication of rewarded works
between pairs of agents. Figure 6(b) shows how the network of communication
links developed between agents that communicate artworks and evaluations on a
regular basis excludes the two agents with different hedonic functions.

The results of the simulation are presented in Figure 6(a). The results indicate
that the agents with the same preference for novelty to be somewhat creative
according to their peers, with an average attributed creativity of 5.57. However,
neither agent 10, with a preference for low amounts of novelty, nor agent 11, with
a preference for high degrees of novelty, received any credit for their artworks.
Consequently none of the artworks produced by these agents were saved in the
domain for future generations. When these agents expired nothing remained in
the system of their efforts.



The results of this experiment appear to show the emergence of the Law of
Novelty in models of creativity societies that have agents with different preferences
for novelty. One explanation for this may be that agents with a lower novelty
preference tend to innovate at a slower rate than those with a higher hedonic
preference and while an agent must produce novelty to be considered creative, it
must do so at a pace that matches its audience. There is no advantage in producing
many highly novel artefacts if the audience cannot appreciate them.

3.2 The Formation of Cliques

In this second experiment, the behaviour of groups of agents with different hedonic
functions is investigated. To do this a group of 10 agents was created, half of them
had a hedonic function that favoured novelty close to N=6 and the other five
agents favoured novelty values close to N=15. Figure 7(a) shows the payments of
creativity credit between the agents in recognition of interesting artworks sent by
the agents.

The results show that while an agent must innovate to be 

considered creative, it must do so at a pace that matches other 

agents to achieve recognition. The agent with a preference for 

high levels of novelty and hence rapid innovation was just as 

unsuccessful in gaining recognition as the agent with a low 

novelty threshold that innovated too slowly. 

To better understand the effects of an agent having a different 

hedonic function to the majority of agents in a population a series 

of similar simulation runs were performed where the difference 

between the majority preference for novelty and the two renegade 

agents is varied from 8, as in the current experiments giving N=3 

and N=19, and 1, by giving the two agents hedonic functions 

favouring N=10 and N=12. The attributed creativity to the agents 

favouring high and low levels of novelty are shown in Figure 5. 

The figures plotted against the hedonic are the creativity attributed 

to an agent relative to the average creativity of the majority of 

agents that share the same hedonic function. 
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Figure 5. Relative creativity for a range of conservative and 

radical agents over a range of hedonic values. 

 

Figure 5 shows that attributed creativity varies non-linearly with 

the difference between an agent’s preference for novelty and the 

majority. It also shows a slight preference for the works of the 

conservative agent over the radical one. 

The results of this experiment appear to confirm Martindale’s 

hypothesis generalises to the case where works that are very 

similar to ones previously experienced are ignored just as much as 

those that are exact replicas. To avoid being ignored an agent 

must produce some significant novelty that sets a work apart from 

previous examples. 

The results also indicate that while an agent must produce novelty 

to be considered creative, it must do so at a pace that matches its 

audience. There is no advantage in producing many highly novel 

works if the audience cannot appreciate them. In the first run of 

the experiment, the agent with a preference for high levels of 

novelty and hence rapid innovation was just as unsuccessful in 

gaining recognition as the agent with a low novelty threshold that 

did not innovate. Indeed, it appears from the series of experiments 

shown in Figure 5 that erring on the side of caution may be more 

beneficial that innovating too quickly but more work needs to be 

done to confirm this experimentally. 

The study of the individual in The Digital Clockwork Muse is 

similar in several ways to the studies of creative humans 

conducted by cognitive scientists, psychologist, and 

psychometricians. The design of the individuals follows the 

traditional approach taken in cognitive science and artificial 

intelligence of identifying potentially important cognitive 

functions, in this case novelty detection, interestingness 

judgement and curiosity, and then implementing these within a 

computational model. 

The validity of a computational model of cognitive processes is 

often tested by comparing the behaviour of the model against 

observations of human subjects. In this case, the validity of the 

model was tested by comparing the behaviour of a curious design 

agent against observations about individuals engaged in creative 

fields, i.e. Martindale’s observations of the importance of the 

search for novelty. 

Continuing the investigation into the relationship between 

attributed creativity and the deviation of an individual’s preferred 

novelty from the mode this study provided some quantitative 

results into the relationship between an agent’s curious 

“personality” and their creativity, reminiscent of psychometric 

approach to the study of creative individuals. 

Fields of Cliques 
We have also investigated the behaviour of groups of agents with 

different hedonic functions. To do this we created a group of 10 

agents, half of them had a hedonic function that favoured novelty 

N=6 and the other five agents favoured novelty values close to 

N=15. Figure 6 shows the payments of creativity credit between 

the agents in recognition of interesting artworks sent by the 

agents. 
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Figure 6. The total number of messages carrying credit for being 

creative between the agents of the simulation. 

 

Two areas of frequent communication can be seen in the matrix of 

payment messages shown in Figure 6. The agents with the same 

hedonic function frequently send credit for interesting artworks 

amongst themselves but rarely send them to agents with a 

different hedonic function. There are a large number of credit 

messages between agents 0-4 and agents 5-9, but only one 

payment between the two groups – agent 4 credits agent 5 for a 

single interesting artwork. 

The result of putting collections of agents with different hedonic 

functions in the same group appears to be the formation of 

cliques: groups of agents that communicate credit frequently 

amongst themselves but rarely acknowledge the creativity of 

agents outside the clique. As a consequence of the lack of 

communication between the groups the style of artworks produced 

by the two cliques also remains distinct. 

Communication between cliques is rare but it is an important 

aspect of creative social behaviour. Communication between 

cliques occurs when two individuals in the different cliques 

explore design subspaces that are perceptually similar. Each of the 

(a) A matrix of the number of positive cre-
ative evaluations sent between agents.

individuals is then able to appreciate the other’s work because 

they have constructed appropriate perceptual categories. The 

transfer of artworks from a source to a destination clique will 

introduce new variables into the creative processes of the 

destination clique, the two cliques can then explore in different 

directions, just as two individuals do when they share artworks. 

Cliques can therefore act as “super-artists”, exploring a design 

space as a collective and communicating interesting artworks 

between cliques. 

 

 

Figure 7. A screenshot of a simulation clearly showing two non-

communicating cliques.  

 

Figure 7 is a screenshot of the running simulation that has formed 

two cliques. To help visualise the emergent cliques, the distances 

between agents are shortened for agents that communicate 

frequently. The different styles of the two groups can also be seen, 

with agents 0-4 producing smooth radial images with low a fractal 

dimension (~1.4) and agents 5-9 producing fractured images with 

clearly defined edges and a higher fractal dimension (~1.7). A 

brief description of the calculation of fractal dimension used in 

these studies is given below. 

A second pair of groups was simulated with more similar hedonic 

functions that favoured N=9 and N=12. The communications of 

credit between agents is illustrated in Figure 8. The results show 

that while the cliques still form and communication of credit is 

still concentrated within these cliques, there are more inter-clique 

communications than before. 

An interesting observation about the nature of the communication 

between cliques can be made from looking at Figure 8 which 

shows that most of the payments between cliques came from the 

second group with preference for N=12; only one inter-clique 

payment was made by a member of the more conservative group 

that preferred N=9, i.e. between agent-1 and agent-5. This 

observation is consistent with the earlier observation that it is 

better to be too conservative than too radical when trying to gain 

the recognition of others with different preferences for novelty. 
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Figure 8. The communication of credit between two groups of 

agents having preference for novelty values N=9 and N=12. 

 

There are at least two possible explanations for this observation. 

The first is that agents with a higher preference for novelty can 

find the images produced by more conservative agents novel in 

comparison to the work of their fellow clique members. The 

second is that agents that prefer lower levels of novelty cannot 

appreciate the work of more radical agents and hence never 

attribute any credit to them. It is unclear from these results which 

explanation is more likely as either would explain the data. 

Further work may find that both behaviours play a role in the 

formation of cliques and the unequal communication of credit 

between them. 

The results of this experiment show that when a population of 

agents contains subgroups with different hedonic functions, the 

agents in those subgroups form cliques. The agents within a clique 

communicate credit frequently amongst themselves but rarely to 

outsiders. The stability of these cliques depends upon how similar 

the individuals in different subgroups are and how often the 

agents in one subgroup are exposed to the artworks of another 

subgroup. Further research is needed to determine whether other 

factors that can affect judgements of interestingness can similarly 

affect the social structure. 

The studies of clique formation in the fields modelled by The 

Digital Clockwork Muse provide an indication of how the 

methods of anthropology and sociology can be applied to 

artificially creative systems. As a consequence of these studies we 

can begin to understand how barriers form between different 

members of a field. The utility of this approach can be seen in the 

development of the fields of computational sociology and 

computational anthropology to investigate social phenomena. 

Potentially, similar models may be able to illuminate issues 

surrounding the emergence of “paradigm shifts” as documented 

by Kuhn [6]. 

Domains of Complexity 
To investigate the relationship between the search for novelty and 

the complexity of the resulting artworks an experiment was 

conducted to compare agents with different preferences for 

novelty encoded in their hedonic functions. To measure the 

complexity of the images the fractal dimension of selected images 

was calculated. The calculation was performed on the images after 

image processing to determine the dominant edges so that the 

fractal dimension would be that of the images as perceived by the 

agents. The fractal dimension was estimated using the box 

counting method – this is the same method that Taylor et al. [15] 

(b) A screenshot of a simulation showing
two non-communicating cliques.

Fig. 7: The formation of cliques between agents with different hedonic functions.

Two areas of frequent communication can be seen in the matrix of payment
messages shown in Figure 7(a). The agents with the same hedonic function fre-
quently send credit for interesting artworks amongst themselves but rarely send
them to agents with a different hedonic function. There are a large number of credit
messages between agents 0–4 and agents 5–9, but only one payment between the
two groups – agent 4 credits agent 5 for a single interesting artwork.



The result of putting collections of agents with different hedonic functions in the
same group appears to be the formation of cliques: groups of agents that communi-
cate credit frequently amongst themselves but rarely acknowledge the creativity of
agents outside the clique. As a consequence of the lack of communication between
the groups the style of artworks produced by the two cliques also remains distinct.

Figure 7(b) is a screenshot of the running simulation that has formed two
cliques. To help visualise the emergent cliques, the distances between agents are
shortened for agents that communicate frequently. The different styles of the two
groups can also be seen, with agents 0–4 producing smooth radial images and
agents 5–9 producing fractured images with clearly defined edges.

The results of this experiment show that when a population of agents con-
tains subgroups with different hedonic functions, the agents in those subgroups
form cliques. The agents within a clique communicate credit frequently amongst
themselves but rarely to outsiders. The stability of these cliques depends upon
how similar the individuals in different subgroups are and how often the agents
in one subgroup are exposed to the artworks of another subgroup. Further re-
search is needed to determine whether other factors that can affect judgements of
interestingness can similarly affect the social structure.

Communication between cliques is rare but it is an important aspect of creative
social behaviour. Communication between cliques occurs when two individuals in
the different cliques explore design subspaces that are perceptually similar. Each of
the individuals is then able to appreciate the other’s work because they have con-
structed appropriate perceptual categories. The transfer of artworks from a source
to a destination clique will introduce new variables into the creative processes of
the destination clique, the two cliques can then explore in different directions,
just as two individuals do when they share artworks. Cliques can therefore act
as “super-artists”, exploring a design space as a collective and communicating
interesting artworks between cliques.

3.3 Domains of Complexity

To investigate the relationship between the search for novelty and the complexity
of the resulting artworks an experiment was conducted to compare agents with
different preferences for novelty. To measure the complexity of the images the
fractal dimension of selected images was calculated using the box counting method
[15]. For any two-dimensional image, a measure of its fractal dimension will produce
a value between 0.0 and 2.0, depending on how much of the space is filled in the
image at different levels of detail.

To investigate the relationship between the preferred degree of novelty and the
fractal dimension of the resulting images, two types of agents were used. One type
preferred novelty values of N=18 and the other type favoured novelty values of



N=11. Three agents of each type were allowed to explore the space of genetic
artworks for 50 time steps. Figure 8 shows how the complexity of the images
produced by the two groups of agents quickly diverge and then remain at a constant
level. For the group with the higher preference for novelty, the results appear to
confirm Martindales hypothesis that the search for novelty promotes increased
complexity over time [14], at least up to some limited level of complexity.

used to determine the fractal dimension of Jackson Pollock’s drip 

paintings. 

For any two-dimensional image, a measure of its fractal 

dimension will produce a value between 0.0 and 2.0, depending 

on how much of the space is filled in the image at different levels 

of detail. To calculate the fractal dimension of an image a series of 

grids are place over the image and the number of boxes occupied 

by the feature of interest in the image is counted. Figure 9 

illustrates the process where the edge segments are the feature of 

interest. 
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Figure 9. The box-counting method of estimating fractal 

dimension of an image. 

 

The fractal dimension can be calculated manually by plotting the 

count of boxes containing features against the number of boxes 

per side on a log-log graph and performing a linear regression. 

The gradient of the line produced is used as an estimate of the 

fractal dimension. More information about the box-counting 

method of fractal dimension estimation can be found in 

Mandelbrot [8]. 

To investigate the relationship between the preferred degree of 

novelty and the fractal dimension of the resulting images, two 

types of agents were used. One type preferred novelty values of 

N=18 and the other type favoured novelty values of N=11. Three 

agents of each type were allowed to explore the space of genetic 

artworks for 50 time steps. 

Figure 10 shows how the average fractal dimension of the images 

selected by the three agents in each test group changed over time. 

The graph shows that agents with a preference for greater novelty 

produce images with higher fractal dimensions, appearing to 

confirm Martindale’s hypothesis that the search for novelty 

promotes increased complexity over time [9]. To confirm this 

relationship between fractal dimension and preferred novelty, 

similar tests (3 agents/group for 50 time steps) were performed for 

a total of 19 different test groups with hedonic functions that 

favoured novelty values in the range 1 ! N ! 19. 
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Figure 10. The development of two distinct styles of images with 

different fractal dimensions in two groups of agents with hedonic 

functions that peak for the values of novelty indicated. 

 

Figure 11 shows that the relationship between the preferred value 

of novelty and the fractal dimension of the resulting images is 

almost linear for the large proportion of values for preferred 

novelty. Performing a linear regression on the data points we 

discover that on average the fractal dimension of the resulting 

image goes up by 0.1 per unit step in novelty preferred. 
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Figure 11. A comparison of the average fractal dimension against 

a range of peak hedonic values. 

 

Visually this means that the images produced by agents that prefer 

greater novelty appear more complicated than those produced by 

agents that prefer lower amounts of novelty. Figure 12 displays a 

small gallery of images recorded as examples of interesting 

artworks by the test groups with preference for the novelty. 

How can we explain this relationship between the preferred 

novelty of an agent and the fractal dimension of the resulting 

images? One explanation is that the curious exploration of the 

space of genetic artworks drives the agents towards subspaces that 

have an appropriate amount of local variability to continually 

satisfy the need for novelty. Consequently, agents that prefer 

novel forms will tend towards areas of the design space that 

produce more complex images, as there is a great deal more 

variability between complex images than between simple ones. 

Analysing the domains produced by fields of curious individuals 

we have been able to gain some interesting insights into the 

relationship between the search for novelty and the complexity of 

the works produced. Analysing the history presented by the 

domains of small groups of individuals provided clear evidence 

that the complexity of works increases over time as the 

individuals explore the space of possible artefacts. It also 

suggested that agents with different levels of preferred novelty 

produced artefacts with different levels of complexity. An 

approach more akin to the multiple domain spanning 

historiometric approach of Gruber [5], Simonton [13], and 

Gardner [4] provided a clearer picture of the relationship and a 

clear link between the preferred novelty of curious design agents 

and attributed novelty within The Digital Clockwork Muse was 

developed. 

 

Fig. 8: The complexity of genetic artworks produced by two groups of agents with different preferences
for novelty.

To investigate the relationship between a field’s preference for novelty and the
complexity of the artefacts produced by its members, 19 test groups were created
consisting of 3 agents in each group. In each group the agents favoured the same
novelty value, across the 19 tests the groups favoured novelty values in the range
1 ≤ N ≤ 19. Figure 9 shows that the relationship between the preferred value of
novelty and the average fractal dimension of the resulting images is almost linear
for the large proportion of values for preferred novelty. In other words, agents with
a preference for greater novelty produce images with higher fractal dimensions.

How can we explain this relationship between the preferred novelty of an agent
and the fractal dimension of the resulting images? One explanation is that the
curious exploration of the space of genetic artworks drives the agents towards sub-
spaces that have an appropriate amount of local variability to continually satisfy
the need for novelty. Consequently, agents that prefer novel forms will tend to-
wards areas of the design space that produce more complex images, as there is a
great deal more variability between complex images than between simple ones.

4 Discussion

Curious agents have been developed by a number of other researchers. Schmidhüber
created curious agents that competed against each other to determine what was



used to determine the fractal dimension of Jackson Pollock’s drip 

paintings. 

For any two-dimensional image, a measure of its fractal 

dimension will produce a value between 0.0 and 2.0, depending 

on how much of the space is filled in the image at different levels 

of detail. To calculate the fractal dimension of an image a series of 

grids are place over the image and the number of boxes occupied 

by the feature of interest in the image is counted. Figure 9 

illustrates the process where the edge segments are the feature of 

interest. 
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Figure 9. The box-counting method of estimating fractal 

dimension of an image. 

 

The fractal dimension can be calculated manually by plotting the 

count of boxes containing features against the number of boxes 

per side on a log-log graph and performing a linear regression. 

The gradient of the line produced is used as an estimate of the 

fractal dimension. More information about the box-counting 

method of fractal dimension estimation can be found in 

Mandelbrot [8]. 

To investigate the relationship between the preferred degree of 

novelty and the fractal dimension of the resulting images, two 

types of agents were used. One type preferred novelty values of 

N=18 and the other type favoured novelty values of N=11. Three 

agents of each type were allowed to explore the space of genetic 

artworks for 50 time steps. 

Figure 10 shows how the average fractal dimension of the images 

selected by the three agents in each test group changed over time. 

The graph shows that agents with a preference for greater novelty 

produce images with higher fractal dimensions, appearing to 

confirm Martindale’s hypothesis that the search for novelty 

promotes increased complexity over time [9]. To confirm this 

relationship between fractal dimension and preferred novelty, 

similar tests (3 agents/group for 50 time steps) were performed for 

a total of 19 different test groups with hedonic functions that 

favoured novelty values in the range 1 ! N ! 19. 
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Figure 10. The development of two distinct styles of images with 

different fractal dimensions in two groups of agents with hedonic 

functions that peak for the values of novelty indicated. 

 

Figure 11 shows that the relationship between the preferred value 

of novelty and the fractal dimension of the resulting images is 

almost linear for the large proportion of values for preferred 

novelty. Performing a linear regression on the data points we 

discover that on average the fractal dimension of the resulting 

image goes up by 0.1 per unit step in novelty preferred. 
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Figure 11. A comparison of the average fractal dimension against 

a range of peak hedonic values. 

 

Visually this means that the images produced by agents that prefer 

greater novelty appear more complicated than those produced by 

agents that prefer lower amounts of novelty. Figure 12 displays a 

small gallery of images recorded as examples of interesting 

artworks by the test groups with preference for the novelty. 

How can we explain this relationship between the preferred 

novelty of an agent and the fractal dimension of the resulting 

images? One explanation is that the curious exploration of the 

space of genetic artworks drives the agents towards subspaces that 

have an appropriate amount of local variability to continually 

satisfy the need for novelty. Consequently, agents that prefer 

novel forms will tend towards areas of the design space that 

produce more complex images, as there is a great deal more 

variability between complex images than between simple ones. 

Analysing the domains produced by fields of curious individuals 

we have been able to gain some interesting insights into the 

relationship between the search for novelty and the complexity of 

the works produced. Analysing the history presented by the 

domains of small groups of individuals provided clear evidence 

that the complexity of works increases over time as the 

individuals explore the space of possible artefacts. It also 

suggested that agents with different levels of preferred novelty 

produced artefacts with different levels of complexity. An 

approach more akin to the multiple domain spanning 

historiometric approach of Gruber [5], Simonton [13], and 

Gardner [4] provided a clearer picture of the relationship and a 

clear link between the preferred novelty of curious design agents 

and attributed novelty within The Digital Clockwork Muse was 

developed. 

 

(a) A comparison of the average fractal dimension
against a range of peak hedonic values.
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Figure 12. A small gallery of artworks produced by agents with 

different preferences for novelty (N) ranging from N=0 to N=19. 

CONCLUSIONS 

The aim of this paper has been to show that the artificial creativity 

approach to developing computational models of creative systems 

provides useful basis for a wide range of studies into the three 

essential components of any creative system. The ability to 

experimentally study the computational processes of the 

individual as well as the emergent social structures in the field and 

the records kept in the domain provides an exciting opportunity to 

conveniently combine multiple approaches to the study of 

creativity that are, by necessity, conducted in relative isolation in 

the real world. 
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(b) A small gallery of genetic artworks
evolved by the curious design agents.

Fig. 9: The relationship between preferred novelty and the complexity of the genetic artworks evolved
by the curious agents with different preferences for novelty 0 ≤ N ≤ 19.

interesting [16]. Marsland et al [17] produced curious robots that explored environ-
ments for novelty as a way of generating maps of the space. Interest in intrinsically
motivated agents, like curious agents, is increasing as researchers discover the ben-
efits of self-motivated learning in both modelling and applications [18, 19].

Other computational models based on Csikszentmihalyi’s system view of cre-
ativity have also been developed [20] that demonstrate the important role that
authority figures, or gatekeepers, play in creative fields. The contribution of the
framework presented here is the bringing together of curious agents and the creative
systems to support an approach to computationally modelling creative societies at
multiple levels.

The work presented here is still in its early stages of development and there
are many ways that it can be extended to improve the models or investigate other
features of creative societies. Future work using this framework will aim to extend
the experimental possibilities at both the individual and social levels of creativity.
Three possible directions for future work are:

Integrating Evaluations of Appropriateness One of the obvious limitations
of the work presented here is the lack of an explicit test for the appropriateness
of artefacts. To apply the computational model of more significant domains,
future work will integrate domain-specific knowledge so that the test for cre-
ativity can include a test for appropriateness within a domain.



Integrating Alternative Models of Creative Processes The curious design
agents presented in this paper use an evolutionary design tool to explore a
design space. Integrating alternative models of creative processes including
analogy-making [21] could provide a useful framework for evaluating the ef-
fectiveness of such creative processes within a social and cultural context.

Modelling Individuals with Intrinsic Motivations other than Curiosity
Curiosity is not the only intrinsic motivation for creative individuals, although
it is one of the most persistent [14]. Other motivations for exploring a design
space can be computationally modelled in design agents, e.g. competency [19].

Modelling Large Creative Societies The ability to simulate larger creative so-
cieties will permit the study of the spread of innovations and styles. It may also
facilitate the emergence of new fields as cliques attain a critical size. Spatial and
topological relationships will become more important issues in large population
models.

Modelling Non-Homogenous Societies There are several other important play-
ers in creativity societies besides the producers of innovations including, e.g.
consumers, distributors, critics, etc. Each has their own role to play in cre-
ative societies; consumers evaluate products, distributors distribute products
widely, and critics distribute their evaluations widely. Convincing other peo-
ple that you’ve had a creative idea is often harder than having the idea in
the first place. In non-homogenous societies of agents, the selection of which
agents to communicate with becomes an important strategy for agents seeking
recognition as a creative individual.

Modelling More Complex Social Interactions Simulations of technological
innovation in industry show that the consideration of the costs of innovation in
decision-making can lead to complex behaviour [22]. Simulating similar costs
in the design process may provide a better understanding of the economics
of creative design in creative societies and the strategies needed to manage
creativity with limited resources.

Modelling Domain-Specific Symbol Systems Domains in the real world con-
tain much more than examples of previously produced artefacts. Creative do-
mains often include symbol systems, e.g. languages, that are specific to the
knowledge held in the domain. These symbol systems can present opportunities
for domains to differentiate as they present barriers to the flow of information
between domains.

Modelling the Evolution of Domains Domains and the symbol systems they
contain evolve over time through use by the field. Computational models of
the evolution of language [23] may provide a useful technique for developing
computational models of domain-specific languages that evolve over time.

The aim of this paper has been to present a framework for computationally
modelling creative societies using curious design agents and to show some of the



research opportunities that exist using models developed using this framework.
By using curious design agents as models of individuals within creative fields, the
framework provides a flexible basis for developing multi-agent systems that can be
used to study the interaction between personal and social judgements of creativity.
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