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Abstract

This paper examines the possibility for developing a compu-
tational model of creative systems that supports the evolution
of language in creative cultures. First we present some previ-
ous work developing models of creative individuals and cre-
ative societies. The extension of these earlier models towards
a model of creative cultures is discussed with particular em-
phasis on the modelling of the evolution of language in cre-
ative domains using “language games.” The model presented
here extends the previous work with the potential for incorpo-
rating aspects of the cultural situation that affect the produc-
tion, evaluation and adoption of creative works. We conclude
with a discussion of the potential significance of developing
language capable multi-agent systems for the modelling of
creative cultures.

Creative behaviour is personally, socially and culturally sit-
uated: creative individuals work within environments rich
with personal experiences, social relationships and accumu-
lated cultural knowledge. The majority of computational
models of creativity have focussed on the cognitive and in-
dividual levels of the creative process, some work has be-
gun to model social factors but little work has attempted to
model creativity within a cultural environment. Developing
models that incorporate a cultural component will allow the
affects of culture on creative development to be studied in
simulation—potentially creating new tools for the study and
support of creativity.

Traditionally, computational models of creativity have fo-
cussed on capturing individualistic, or cognitive, aspects by
modelling the creative process as generative systems, e.g.,
models of anology-making (French 2006). Often these have
been developed based on Newell & Simon’s characterization
of creativity as problem-solving (Newell, Shaw, & Simon
1958; Newell & Simon 1972), however, as some commen-
tators have pointed out, creative individuals can be distin-
guished as much by their ability to find new problems as by
their capacity to solve problems posed by others (Getzels &
Csikszentmihalyi 1976).

Studies of human creativity has revealed the importance
of the social and cultural environment for creative individu-
als (Gruber 1981; Martindale 1990; Gardner 1993). Creative
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individuals are often drawn to particular locations at the in-
tersections of cultures because they offer the richest opportu-
nities for novel and diverse cultural experiences. For exam-
ple, Vienna at the beginning of the 20th Century was a fer-
tile environment for creative ideas because of its geographic
location at the crossroads of Eastern and Western cultures.
Developing computational models that support distinct cul-
tural environments, e.g., separate languages, will allow us to
explore a variety of questions about how these novel experi-
ences may arise in silico.

Csikszentmihalyi’s systems view of creativity, later de-
veloped into the Domain Individual Field Interaction (DIFI)
framework presented in Feldman, Csikszentmihalyi, &
Gardner (1994), is a unified approach to studying human
creativity that provides an integrated view of individual cre-
ativity within a social and cultural context (Csikszentmihalyi
1988). According to this framework, a creative system has
three interactive subsystems: domain, individual and field.
A domain is an organised body of knowledge, including spe-
cialised languages, rules, and technologies. An individual is
the generator of new works in a creative system, based on
their knowledge of the domain. A field contains all individ-
uals who can affect the content of a domain, e.g., creators,
audiences, critics, educators, etc.

The interactions between individuals, fields and domains
(illustrated in Figure 1) form the basis of the creative process
in the DIFI framework: individuals acquire knowledge from
domains and propose new knowledge evaluated by the field;
if the field accepts a proposed addition, it becomes part of
the domain and available for use by other individuals.

As a first step towards developing a model of culturally
situated creativity, we are focussing on developing a model
of the evolution of specialised languages associated with one
or more creative domains. In doing so, we are exploring the
ways in which the evolution of language and creative be-
haviour of individuals and fields affect each other. How does
creative behaviour affect the evolution of language? How
does the evolution of language affect creative behaviour?

Previous Work
Previous computational models of creative individuals at-
tempted to model some of the motivations that drive individ-
uals to be creative (Saunders & Gero 2001). Curious agents
embody a model of curiosity based on studies of humans and



Figure 1: The DIFI model of creative systems

other animals, where curiosity is triggered by a perceived
lack of knowledge about a situation and motivates behaviour
to reduce uncertainty through exploration (Berlyne 1971).

Unlike other models of creative processes that try to max-
imise some utility function, curious agents are motivated to
discover ‘interesting’ works based on their previous experi-
ences. Interest is calculated according to an “hedonic func-
tion” based on novelty where the most interesting works are
similar-but-different to those that have been experienced be-
fore, see Figure 2.

defined as the Euclidean distance between the vectors 
representing the new image and the closest matching prototype in 
the 1024 dimensional input space.  The novelty values reported in 
the remainder of this section are the raw novelty values, i.e. the 
values of output by the best matching neuron of the neural 
network. For the size of image used these values range between 
N=0 and N=32, with N=0 being an exact match and N=32 being a 
complete mismatch. 

The model of curiosity used by the curious design agents in The 
Digital Clockwork Muse also incorporates a “hedonic function” 
that transforms novelty into a measure of interestingness. The 
hedonic functions used in The Digital Clockwork Muse are based 
on the Wundt Curve that Berlyne [1] used as a model for the 
typical reactions that animals and humans display in the presence 
of novel situations. The Wundt Curve is illustrated in Figure 3 as 
the combination of a reward and punishment functions. 

Using Wundt Curve hedonic functions the curious design agents 
in The Digital Clockwork Muse all favour artworks that are 
similar-yet-different to those that have been seen before, however, 
the agents differ in how similar a new artwork must be for it to be 
considered highly interesting and therefore potentially creative. 
The preferred novelty of each agent is expressed as a value N that 
indicates the amount of novelty associated with peak interest in 
the Wundt Curve. In The Digital Clockwork Muse, N ranges from 
0 to 32; this is equal to the range of the potential classification 
error generated by the novelty detectors used. 
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Figure 3. The Wundt Curve: the hedonic function used to 

calculate interestingness. 

The Law of Novelty 
We investigated the effects of the search for novelty, by producing 
agents with different hedonic functions. The aim was to show that 
agents are not recognised as creative when they fail to innovate 
inappropriately. Agents can innovate inappropriately either by 
producing “boring” images that are too similar to ones previously 
experienced by other agents, or by producing “radical” images 
that are too different for other agents to appreciate. 

We have simulated both types of inappropriate innovation in a 
single simulation. For this experiment we created a group of 
agents most of whom, agents 0-9, shared the same hedonic 
function, i.e. the same preference for average novelty (N=11). 
Two of the agents have quite different novelty preferences. One, 
agent 10, has a preference for low amounts of novelty (N=3) and 
the other, agent 11, has a preference for high amounts of novelty 
(N=19). Agents with a lower novelty preference tend to innovate 
at a slower rate than those with a higher hedonic preference. The 
results of the simulation are presented in Table 2. 

 

Table 2. The attributed creativity for a group of agents with 
different preferences for novelty. 

Agent 

ID 

Preferred 

Novelty 

Attributed 

Creativity 

0 N=11 5.43 

1 N=11 4.49 

2 N=11 4.50 

3 N=11 3.60 

4 N=11 4.48 

5 N=11 1.82 

6 N=11 6.32 

7 N=11 8.93 

8 N=11 10.72 

9 N=11 5.39 

10 N=3 0.0 

11 N=19 0.0 

 

Figure 4 shows how the network of communication links that has 
developed between agents that communicate artworks and 
evaluations on a regular basis excludes the two agents with 
different hedonic functions. In the screenshots of the running 
simulation the squares represent agents; the images in each square 
shows the currently selected genetic artwork for that agent, the 
number above each agent shows its attributed creativity, and the 
lines between agents indicate the number of rewarded 
communications between pairs of agents. 

 

 

 
Figure 4. Screenshot of a simulation demonstrating the 

emergence of the Law of Novelty. 

The results show the agents with the same preference for novelty 
to be somewhat creative according to their peers, with an average 
attributed creativity of 5.57. However, neither agent 10, with a 
preference for low amounts of novelty, nor agent 11, with a 
preference for high degrees of novelty, received any credit for 
their artworks. Consequently none of the artworks produced by 
these agents were saved in the domain for future generations. 
When these agents expired nothing remained in the system of 
their efforts. 

Figure 2: The Wundt Curve, an hedonic function used to
model curiosity in curious design agents.

Using the DIFI framework as a guide, curious agents have
been used to develop computational models of creative fields
to investigate emergent social phenomena, e.g., the forma-
tion of cliques (Saunders & Gero 2002). Using curious
agents to model creative fields produced a simple model
where curious agents share ‘interesting’ works with peers
for evaluation. Interestingness is judged against an agent’s
memory of previously seen works, including those that it has
produced and those sent to it by other agents.

In this model, pairs of agents engage in a simple interac-
tion where an initiator, having already produced a work that
it believes to be ‘interesting’, sends it to a second agent for
evaluation. The second agent evaluates the work received
against its memory of previously seen works and responds

with an evaluation of the work as a numerical value of how
‘interesting’ the work is.

Works that are determined to be ‘interesting’ by individ-
uals other than the creator, i.e., by agents asked to evaluate
a work, can be added to a central repository of ‘creative’
works. By not allowing creators to directly add their works
to the repository, some level of agreement about what consti-
tutes an ‘interesting’ work must be achieved. This repository
provided a store of works within the domain, but this is only
one small part of the domain’s role in a creative system.

This computational model of a creative system supported
the simulation of some general patterns observed in human
creativity, e.g., the isolation of individuals that fail to inno-
vate at an appropriate rate to gain acceptance by a field (Mar-
tindale 1990). An example of a social simulation is shown
in Figure 3 where two individuals have been ignored by a
field, one for innovating too slowly, the other for innovating
too quickly (Saunders & Gero 2002).
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representing the new image and the closest matching prototype in 
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Figure 3. The Wundt Curve: the hedonic function used to 

calculate interestingness. 
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emergence of the Law of Novelty. 

The results show the agents with the same preference for novelty 
to be somewhat creative according to their peers, with an average 
attributed creativity of 5.57. However, neither agent 10, with a 
preference for low amounts of novelty, nor agent 11, with a 
preference for high degrees of novelty, received any credit for 
their artworks. Consequently none of the artworks produced by 
these agents were saved in the domain for future generations. 
When these agents expired nothing remained in the system of 
their efforts. 

Figure 3: The Digital Clockwork Muse, a computational
model of social creativity using curious design agents.

These early models of creative systems incorporated a
simple model of the domain, where highly-valued works
could be added to a repository if found sufficiently inter-
esting by agents other than the creator. This model of the
domain as a store of examples of valuable works that can
be used by individuals as starting points for the production
of new works. This model of the domain is insufficient to
model most cultural aspects of interest, mostly because of
the lack of a domain specific language.

The research project presented here extends previous
work by incorporating additional aspects of the cultural sit-
uation that affect the production, evaluation and adoption of
creative works. Significantly, this involves the development
of a new model that incorporates the evolution of domain-
specific languages in creative cultures.

In contrast to existing social models, such a cultural
model will allow agents to record traces of their interactions,
experiences and related artefacts. These records and descrip-
tions serve as starting points for agents to study and develop
new knowledge as well as to transfer knowledge between
domains. The proposed model represents the next step to-



wards modelling the cycle of production in creative systems;
from the domain to the individual to the field and back to the
domain. For example, the use of language allows individu-
als to describe new creative ideas in advance of producing
an artefact, thereby setting a goal for the production of the
artefact. Our aim is to develop agents that can use language
to pose ‘interesting’ creative challenges as ambiguous lin-
guistic constructions.

The Proposed Model
In our proposed model of a creative system, agents continue
to share works with peers in a field as before, sending in-
teresting works for evaluation to other agents. In addition,
agents can communicate descriptions of works, e.g., require-
ments, as linguistic expressions. This extends the previous
model of social creativity and places more emphasis on the
importance of interactions in creative systems, in line with
the DIFI framework.

To develop our new model, we have adapted the peer-to-
peer interaction between individuals to incorporate a model
of the evolution of language in creative cultures on the work
of Steels, who developed a model of the evolution of lan-
guage as a consequence of a population of agents playing
‘language games’ between pairs of agents (Steels 1996b).
Such models are capable of producing lexicons of words
with meanings grounded in experience.

The evolution of language is a distributed and self-
organizing; through the repeated playing of language games
between pairs of agents, a shared lexicon of words and their
associated meanings evolve in combination. Of particular
interest, from our perspective of modelling domain-specific
languages, are the ambiguities that arise in the languages
evolved by playing language games; a single word may have
multiple meanings and multiple words may have the same
meaning.

Anyone who has tried to communicate across disciplinary
boundaries will likely have experienced something similar,
e.g., familiar words having unfamiliar meanings and unfa-
miliar words having familiar meanings. The resolution of
tensions created when individuals from different fields com-
municate has the potential for creative output as the mean-
ings of words are negotiated (Gemeinboeck & Dong 2006).

In our proposed model, we extend the existing models
of the evolution of language by developing a new language
game based on the interactions within a creative systems,
where speaker and listener become creator, audience and
critic.

Language Games
A language game is an abstract and simplified method
of communication. The concept was introduced by Lud-
wig Wittgenstein to study the use of language in society
(Wittgenstein 1953). A simple example of a language game,
coined by Wittgenstein, is a dialogue between a builder and
his assistants. The builder identifies what type of stone
is needed for construction, by saying “slab”, “block” or
“beam”, and the assistant responds by bringing the appro-
priate materials in the appropriate order. Wittgenstein de-

scribes language games in which participants can commu-
nicate to describe or learn about objects, report events, give
commands or solve problems.

As a tool in multi-agent system development, language
games enable the dissemination of concepts and biases
throughout a population if language games in which pres-
sure exists to develop a coherent lexicon are played. In
a society of curious design agents, we are using language
games to model the development of specialised languages
within fields as the agents explore the domain for ‘interest-
ing’ works.

Systems based on the evolution of language based on lan-
guage games is that the system is open, agents can be added
or removed from the system at any time. Agents that are
added to a system can quickly adapt to the lexicon in use.
We plan to use this capacity to develop models of multiple
domains that agents can move between. This type of move-
ment will allow agents to both adapt to the lexicons used
in different domains but also affect the development of lan-
guage as it transports meanings and words from one domain
to another.

Guessing Games
The language games of Steels are guessing games, where
one agent describes an object to another and the second
attempts to identify the correct topic from the description
(Steels 1995). Steels guessing games have been used to dis-
criminate between different agents (Steels 1996b), between
other objects in the agents context (Steels 1996a) and be-
tween real objects as presented to a pair of robotic “Talking
Heads” (Steels 1998). In the course of attempting to suc-
ceed at as many language games as possible, the society of
agents is driven to adopt common meanings for their ini-
tially random words and a shared lexicon emerges. Steels
uses this model to support the position that language is an
autonomous adaptive system and that its emergence in hu-
mans could have been the result of self-organisation rather
than the acquisition of a specific language-capable area of
the brain.

Imitation Games
Another form of language game, an imitation game, has
been used to explore the self-organization of vowel systems
(de Boer 2000) and the evolution of music (Miranda, Kirby,
& Todd 2003). These systems share with the research pre-
sented in this paper the quality of having a production com-
ponent that is guided by language games. In the case of
the adaptive vowel systems the agents imitate each other by
producing an expression of the sounds they perceive. In the
society of musical agents, compositions are shared through
agents performing for each other.

The goal of the vowel-formation system (de Boer 2000)
was to investigate the structural tendencies of vowel sys-
tems and to determine where a coherent vowel system could
emerge in a simulation. The agents were given articulatory
and acoustic sensors modelled on human speech and hear-
ing capabilities. An agent would choose a set of vowels at
random and utter them to another agent that would interpret



them according to its vowel system and produce an imita-
tion. The initiator would then indicate whether the imitation
(as understood by the initiator) was the same as the original
signal. The agents were found to be capable of evolving co-
herent vowel systems, and it was found that this ability was
robust to background noise.

In the model of the evolution of music, a similar mecha-
nism to that used by de Boer is used to promote the propaga-
tion of, initially randomly generated, tunes throughout a so-
ciety (Miranda, Kirby, & Todd 2003). The success of a tune
is, like the success of a vowel, measured by the ability of
another agent to reproduce it. A tune is successfully repro-
duced when the agent who produced the initial performance
knows no tunes that are more similar to the imitators recital
than the one it initially performed. The agents quickly devel-
oped coherent sets of tunes and were capable of successful
recitals.

Generation Games
To allow us to model a common form of interaction in
design, we are introducing a new type of language game,
which we call a generation game. A generation game in-
volves a request by a “client” (initiator) agent to a “de-
signer” agent. The request encodes a set of design require-
ments specified by the client, the job of the design agent
is to generate a satisfactory design, i.e., a design that satis-
fies the requirements. Unlike the vowel and music imitation
games, where the requirements and the expression are the
same thing, in the generation game the expressed require-
ments contain a set of features that a design must contain but
the specific form of the design will depend on the generative
capabilities of the design agent. To succeed, the design agent
must generate a design that satisfies the requested feature set
by exploring the space of possible designs for a design that
satisfies the design requirements as it understands them.

Unlike the guessing game and the imitation game, there
may be many possible designs that satisfy a single design
requirement. This opens the possibility for judging success
or failure on more than just the ability of a design to satisfy a
set of required features, but to have an implicit requirement
for all designs to be ‘interesting’, according to some function
of interest that does not contradict the intended meaning of
words within a lexicon. Consequently, it is our intention to
show that it is possible, without undermining the grounding
of words within an evolving language, to integrate language
games and curious design agents.

Formal Description
This section provides formal descriptions of a guessing
game, adapted from Steels (1996b; 1996a), and the proposed
generation game for modeling client-designer interactions.
In the following sections we will discuss how both of these
language games may be used to model the evolution of lan-
guage in creative domains.

The Guessing Game
In the guessing game, agents attempt to identify the object
being described by another agent from a context of objects.

Let there be a set of objects O = (o1, ..., om) and a set of
sensory channels Σ = (σ1, ..., σn) which are real valued
functions over O. Each function σj defines a value for each
object oi. Each agent a has a set of feature detectors, or
sensors, Sa = (sa,1, ..., sa,m). A sensor sa,k consists of a
set of possible values Va,k, a function φa,k and a sensory
channel σj . The result of applying a feature detector sa,k to
an object oi is a value v = φa,k(σj(oi)) ∈ Va,k.

The feature set derived by applying the feature detectors
of an agent a to an object oi is defined as Fa,oi . A distinctive
feature set DC

a,oi
is a set of features that serve to uniquely

identify an object oi to agent a from a set of other objects C.
For formal definitions of Fa,oi

andDC
a,oi

see Steels (1996b).
A word is a sequence of letters drawn from a finite shared

alphabet. Wa = (wa,1..., wa,p) is the set of words known
by agent a. Consonant-vowel sequences are used but the
utterance serves only as an identifier (Steels 1996a). In the
original guessing game described by Steels, an expression is
a set of words; word order is not modelled.

A lexicon is a relation between possible feature set K and
a word w. Each member of this relation is called an associ-
ation. Each agent a is assumed to have a single lexicon La,
which is initially empty.

A guessing game lg = 〈C, ai, ar, ot〉 consists of a context
C ⊆ O, an initiator agent ai, a recipient agent ar and a topic
object ot. The game proceeds as follows:

1. The initiator determines a distinctive feature set for the
topic (DC

ai,ot
). In the case of multiple possible distinctive

feature sets, the smallest set is preferred, then the most
abstract (the ones for which the sensory channels have the
smallest set of features), then the set containing the most
used features.

2. The initiator constructs an expression e ∈ Lai which cov-
ers DC

ai,ot
. The cover(D,La) function (formally defined

in Steels 1996a) produces an expression such that all the
features in D are expressed by words in e according to
associations in La. In the case of multiple possible ex-
pressions, the same criteria as for selecting a set DC

ai,ot

are used. In other words, the initiator chooses words that
express its desired meaning.

3. The recipient uncovers from e the feature set f ∈ Far
.

The uncover(e, La) function (Steels 1996a) produces the
set of features that are expressed by the words in e ac-
cording to the associations in La. In other words, the re-
cipient extracts its perceived meaning from the initiators
message.

4. The recipient selects the set of objects Of that are iden-
tified by the set f given the set of feature detectors Σar

.
Of = {o|Far,o ⊇ f}. An object of ∈ Of is chosen based
on which feature detectors have been most successful in
prior games.

5. The recipient non-verbally identifies of to the initiator,
this is described as “pointing” (Steels 1996b). The lan-
guage game lg ends in communicative success if of = ot.

The guessing game can end in failure if one of the follow-
ing occurs:



1. DC
ai,ot

= ∅. There are not enough distinctions in Sai to
identify ot and therefore ∀oc ∈ C,Far,ot ⊆ Far,oc . When
this occurs, the agent will construct a new feature detector
for an empty sensory channel if any exist. Otherwise an
existing sensory channel will be refined by creating a new
feature detector that segments an existing feature.

2. cover(DC
ai,ot

, Lai
) = ∅. The initiator ai may not know

enough words to cover all the features. When this occurs,
the agent will create a new word.

3. uncover(e, Lar
) = ∅. The recipient may not have

enough associations to uncover all the meanings in e.
When this occurs, the agent will create a new meaning
or adjust an existing one if a deduction can be made.

4. of 6= ot. The object identified by the recipient is
not the object selected by the initiator and therefore
uncover(e, Lar ) 6⊂ Far,ot . In this event the success
records for the involved associations are not incremented.

For detailed descriptions of the actions taken by the agents
in the event of these failures see Steels (1996b).

The Generation Game
In the generation game, agents produce designs based on
their understanding of the requests of other agents. This cre-
ates the basic principal of design: a designer must produce
a design that exhibits a set of required behaviours according
to a client. This mechanism is embedded within a language
game between an initiator agent and a designer agent. The
generation game is similar to the guessing game in that the
agents communicate an expression to be identified, and sim-
ilar to the imitation game in that the recipient must construct
something that exhibits the properties conveyed as an ex-
pression.

The set of objects O = (o1, ..., om), the set of sen-
sory channels Σ = (σ1, ..., σn), the set of feature detectors
Sa = (sa,1, ..., sa,m), the features of an object Fa,oi

, words
(w), expressions (e) and lexicons (L) are defined as in the
guessing game described above. In addition, let there be a
set of generative actions Ga possessed by agent a, such that
a set of generative actions Ga,oi ⊆ Ga produces object oi.
The definition of a set of generative actions Ga,oi is imple-
mentation specific.

A generation game Lg = 〈ai, ad〉 consists of an initia-
tor agent ai and a design agent ad. The game proceeds as
follows:

1. The initiator generates a “requirements” feature set r. The
requirements feature set includes values for features that
the initiator agent desires in the designed object.

2. The initiator constructs an expression e ⊆ Lai which cov-
ers r. The cover(r, La) function operates as described in
the guessing game for the distinctive feature set D.

3. The designer uncovers from e the feature set f ⊆ Fad
.

The uncover(e, La) function operates as described in the
guessing game.

4. The designer produces Gad,od
⊆ Gad

|f ⊆ Fad,od
. In

other words, the designer produces a set of design actions

such that the feature set of the designed object od includes
the features uncovered from the initiators expression f .

5. The designer displays od to the initiator. The generation
game Lg ends in communicative success if Fai,od

⊇ r.

The generation game can end in failure if one of the fol-
lowing occurs:

1. Fai = ∅. The initiator possesses no features. If this oc-
curs, the initiator will generate o using a random set of
generative actions Gai,o and create new feature detectors
from it.

2. cover(r, Lai
) = ∅. The initiator ai may not know enough

words to cover all the required features. When this occurs,
the agent will create a new word.

3. uncover(e, Lad
) = ∅. The designer may not have enough

associations to uncover all the meanings in e. When this
occurs, the agent will create a new meaning or adjust an
existing one if a deduction can be made.

4. r 6⊂ Fai,od
. The object produced by the designer does

not satisfy the design requirements produced by the ini-
tiator and therefore uncover(e, Lad

) 6= r. In this event
the success records for the involved associations are not
incremented.

The most significant difference between the guessing
game and the proposed generation game, is that the recip-
ient agent in the guessing game must select the object of

from the context C, whereas the designer agent in the gen-
eration game must generate the object od by some process.
The details of the design process are domain specific and so
are not specified in the language game itself. In addition, the
generation of the requirements feature set, unlike the distinc-
tive feature set of the guessing game, requires a process to
be specified.

The model of interest, at the core of the computational
model of curiosity, can be used in either of these genera-
tive process. Used by the initiator agent ai an hedonic func-
tion will promote an exploration of the space of feature sets,
such that the requirement feature sets produced are similar-
but-different to those produced in the past. Similarly, if the
designer agent ad uses an hedonic function, it will motivate
the search of the space of possible designs to locate novel
designed objects.

The generation game emphasizes the distributed nature of
creativity. The possibility of incorporating a model of cu-
riosity in either the client or the designer illustrates how, in
a typical interaction, both parties have an opportunity to be
creative. As noted by Getzels & Csikszentmihalyi (1976),
the activity of problem–finding can be just as creative as
problem–solving.

An Example Domain
To assist in understanding how language games can be im-
plemented in a domain, this section will examine the com-
ponents of an implementation for the domain of Spirograph1

patterns. The Spirograph is familiar example of a generative

1Spirograph is a registered trademark of Hasbro.



system that can produce complex patterns from the speci-
fication of a few parameters, the selection of a stationary
wheel, a moving wheel, and a hole in the moving wheel for
a pen to draw through.

A simple arrangement of circular gears, as illustrated in
Figure 4, can be modeled mathematically using the follow-
ing equation:

x = (r1 + r2)× cos θ1 − p× cos θ2
y = (r1 + r2)× sin θ1 − p× sin θ2

where:
r1 = radius of fixed gear
r2 = radius of moving gear
p = distance of pen from centre of moving gear
θ1 = rotation of moving gear around fixed gear
θ2 = rotation of moving gear

Figure 4: A simple Spirograph generator using two circular
gears and an extended pen position.

Altering these parameters slightly can produce a range of
different designs. As can be seen in Figure 5, these designs
can differ in tone, size and texture.

(a) r1 = 200, r2 =
40, p = −100

(b) r1 = 140, r2 =
100, p = 100

(c) r1 = 200, r2 =
78, p = −122

(d) r1 = 200, r2 =
5, p = 195

Figure 5: Some example Spirograph patterns.

To apply the language games described above to the do-
main of Spirograph patterns, we must define a set of utter-
ances, a set of design actions and a set of feature detectors.

The set of utterances, used to construct words provides are
not domain–specific and the set already defined for previous
models of the evolution of language, e.g., (k a), (y u),
(z e), (v o), etc.

Previously, curious design agents have been used to ex-
plore the space of Spirograph patterns and have showed con-
siderable fixation on areas of the design space that contained
unexpected patterns (Saunders & Gero 2001). To generate
Spirograph patterns agents perform a guided walk by adjust-
ing the parameters in small increments. Curious agents use
the novelty of surrounding patterns to guide the search pro-
cess, where novelty is based on the distance from a set of
prototypes constructed from previously generated patterns.

To enable the use of language the agents must be able to
discriminate between different Spirograph patterns. This is
achieved through a set of functions that can be used by the
agents to construct feature detectors as required. A useful set
of functions can be constructed using simple measurements
of the pixel values of images of the patterns produced as
described in Table 1.

Table 1: Example feature detectors for Spirograph patterns

Feature Method of Sensing
Contrast Pixel value range

Brightness Average greyscale pixel value
Symmetry Difference of symmetrical pixels

Size Radius of non-background pixels
Noise Entropy of pixel image

Each function defines a sensory channel. Feature detec-
tors are constructed on demand from these sensory channels
on demand, as a consequence of a communicative failure.
For these sensory channels, features are defined as ranges of
values that these channels support. For example, given the
sensory channel that measures size a number of feature de-
tectors may be defined that define such features as “small”
and “large”. As features are defined they are associated with
initially randomly chosen words. After a number of lan-
guage games a population of agents will come to an agree-
ment, e.g., “small” = (y u) and “large” = (k a). Ulti-
mately, as the pressure to form more distinctive expressions
increases, the language games will result in more complex
expressions, e.g., “small dark” = (y u)(v o).

Within a design space like the Spirograph, the two lan-
guage games described above may be used to model differ-
ent aspects of the role that the evolution of language may
play in the development of a creative domain.

Modeling Design
The generation game, as presented above, with a client pro-
ducing a set of requirements that a designer works to satisfy,
is a simplification of a working creative design partnership
but it serves to illustrate how the creative process is shared
between different stake-holders.

The client generates a requirement feature set r, e.g.,
{σsize = 100, σbrightness = 0.1}, which represents a con-
cept, e.g., “small dark”. The client then expresses the fea-



tures as a set of words (y u)(v o) and utters this to the
designer. The designer uncovers the meaning of this expres-
sion and designs according to its understanding of its mean-
ing, which may be different from the clients depending on
how well defined the concepts have become in the system
e.g., {σsize = 90, σbrightness = 0.15, σcontrast = 0.3}.

To produce the design, a curious design agent constructs
an evaluation function using distance metrics appropriate to
each sensory channel in the requirements, such that the eval-
uation function returns a high value for Spirograph patterns
that match the required features. The agent then performs a
search of the space of possible Spirograph patterns to find
an “interesting” pattern that achieves a high score for the
constructed evaluation function.

Like the previous models of creative fields, the addition
of works into the repository of valued works is controlled
by agents other than the designer. In the simplest form of
interaction, if a client agrees that a designer has satisfied the
requirements for a particular pattern in an interesting way,
the design may be added by the client to the repository.

Modeling Education
The guessing game is capable of developing common agree-
ment on the use of words over a population. As such it rep-
resents a language game that can be used to model forms
of education in a creative domain, where the goal of the re-
peated application is to provide a common communicative
framework. Education plays an important role in an individ-
ual’s mastery of a domain. It is only by learning the history
of valued works and the language used to describe them that
an individual can hope to contribute something new and de-
scribe it in such a way as too have it accepted by it’s field.

To model such an educative role, the initiator agent takes
on the role of teacher, selects a context C and a topic ot

from the Spirograph patterns already present in the reposi-
tory of valued works in the domain. A distinctive feature set
is constructed within the context of the other valued objects
in the domainDC

ai,ot
and an expression is constructed e. The

recipient agent, ar, takes on the role of student and must at-
tempt to identify the pattern being described by the initiator
agent, given the context C.

Modeling Multiple Domains
One advantage of using simple pixel-based sensory chan-
nels like the ones described above is that they can poten-
tially be used across multiple image-based design spaces,
allowing language games to be played between compatible
domains. Naturally, in domains that use very different gen-
erative systems, the lexicons will evolve differently to reflect
the distinctive features of works produced, however, features
shared across domains will result in overlapping lexicons
that share some common words.

Discussion
It is certain that computational modeling will continue to
focus on the developing analogs for creative cognition and
individual creative behavior. After all, the promise of de-
veloping computer programs able to solve problems in ways

that are obviously “creative” is so tantalizing that we cannot
help ourselves. What this paper seeks to accomplish, how-
ever, is to show that the potential exists for developing com-
putational models that capture how creativity works within
a cultural environment.

The new language game presented here represents only
our first attempt to model creative activity within a field
that involves language. There are several different kinds of
creative individual (Policastro and Gardner 1999) and each
kind may take part in different types of language games as
they interact. Exploring models of the evolution of language
in creative domains opens up the potential to investigate a
range of potentially important aspects of creativity that are
outside the scope of studies focussed on individuals, for ex-
ample:

• The effects of a common education on the production and
evaluation of creative works

• The emergence of specialized languages that are
grounded in the practices of a field

• The emergence of subdomains as a consequence of differ-
ences in language use across a field

The computational model presented here advances the
computational modeling of the DIFI framework by intro-
ducing a way for language for the description of works to
develop from the interactions within a creative system. Fu-
ture work in this area will need to also need to incorporate
similar mechanisms for the evolution of policies and rules.
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