
Teaching Evolutionary Design Systems by
Extending “Context Free”

Rob Saunders and Kazjon Grace

Sydney University, Sydney NSW 2006, Australia,
rob@arch.usyd.edu.au, kazjon.grace@usyd.edu.au,

http://web.arch.usyd.edu.au/~rob

Abstract. This document reports on a case study using a novel ap-
proach to teaching generative design systems. The approach extends
Context Free, a popular design grammar for producing 2D imagery, to
support parametric and evolutionary design. We present some of the
challenges that design students have typically faced when learning about
generative systems. We describe our solution to providing students with
a progressive learning experience from design grammars, through para-
metric design, to evolutionary design. We conclude with a discussion of
the benefits of our approach and some directions for future developments.

1 Introduction

An understanding of the principles of generative design systems is an important
component of any modern education in computer-aided design. The application
of generative design technologies to solve complex real-world design problems
has come to public attention with the development of the “bird’s nest” stadium
for the Beijing Olympics [1]. Generative design systems are also increasingly
finding uses in the “mass customisation” of goods and services, where they can
be used to produce custom designs for anything from clothing to jewellery to
housing. Technologies used to create generative design systems including a range
of computational processes including evolutionary systems.

1.1 Teaching Generative Design Systems

As part of the Bachelor in Design Computing at the University of Sydney, we
have been teaching generative design systems for more than five years, to both
undergraduate and graduate students. These students typically have a strong de-
sign focus and, while their courses include programming, usually do not possess
the breadth or depth of a computer science student. The curriculum for Gen-
erative Design Systems introduces concepts including; Expert Systems, Design
Grammars, Parametric Design, and Evolutionary Design.

In the past we have had students implement their own evolutionary design
tools based on a skeleton implementation. Based on student feedback, it was evi-
dent that the necessity to implement custom design domains significantly limited

student engagement. Students cited confusion caused by the number of “new”
concepts introduced by evolutionary design systems. Many students were able to
conceptualise and design the problems and fitnesses they wished to implement
but lacked the technical ability to implement them. We also observed that using
dedicated tools to teach individual generative design concepts created a barrier
to students integrating concepts towards a more complete understanding.

To address these issues we have used and extended the Context Free design
tool to provide a single environment to learn about three important concepts;
design grammars, parametric design, and evolutionary design. The remainder of
this paper presents how we have used this system provide a path for learning
about design grammars, parametric design and evolutionary design through a
series of simple extensions of the initial grammar.

2 Description

The Context Free Design Grammar (CFDG) is a simple language designed to
generate complex images from simple programs [2]. Context Free is an open-
source graphical development environment for writing and rendering CFDG pro-
grams [3]. Informally, a CFDG program contains a set of simple rules describing
how to draw designs using a small number of pre-defined terminal shape rules
including circle, square, and triangle. Recursive grammars include rules
that call themselves. Non-deterministic grammars include multiple rules with
the same name, the rule to execute is chosen probabilistically. An example of a
recursive, non-deterministic CFDG program together with one of the images it
can produce is given in Fig. 1.

Other graphical grammar-based design tools such as LParser [4] or Xfrog[5]
have more powerful rendering engines and can produce 3D models as well as
2D images. The advantage of Context Free is its simple syntax and intuitive
user interface. Our experience has been that students are able to explore the
generative potential of recursive and non-deterministic rules and rapidly develop
proficiency by modifying, extending and creating Context Free grammars despite
their limited programming experience.

2.1 Parametric Context Free

By definition, CFDG does not support variables or parameters; the inclusion
of variables would violate the need to keep the CFDG rules free of context.
To allow students to explore parametric design grammars we first created an
interpreter for parametric design grammars that uses template files to define a
set of parameters and a set of modified CFDG rules.

An example template is shown in Fig. 2a. This template defines ten param-
eters and three rules: the rule LINES1 calls LINES2 and then recursively calls
itself, similarly LINES2 calls LINE and then recursively calls itself, LINE draws a
short line segment using the primitive TRIANGLE rule that draws an equilateral
triangle. Parameters are defined within the comments tags at the top of the file

startshape SEED1

rule SEED1 {

SQUARE{}

SEED1 {y 1.0 s 0.99 r 1.5}

}

rule SEED1 0.05 {

SQUARE{}

SEED1 {y 1.0 s 0.99 r 1.5}

SEED1 {y 1.0 s 0.6 r -60}

SEED1 {y 1.0 s 0.5 r 60}

}

rule SEED1 0.05 {

SEED1 { flip 90 }

}

(a) Source code (b) Generated image

Fig. 1. An example Context Free Design Grammar and one of the images that it can
generate. Context Free uses short letter strings to represent its random number seeds.
This image was generated using the string MKY.

and referenced throughout the rules to define scales, rotations, and translations.
Standard CFDG grammar files are generated by substituting all references to a
parameter with a value within the range defined for the parameter. Some of the
possible outputs for the parametric CFDG in Fig. 2a are shown in Fig. 2b. The
space of possible designs generated from the three CFDG rules (comprising just
seven lines of code) is very large, illustrating how quickly students could generate
interesting design spaces to explore with the parametric CFDG system.

2.2 Evolutionary Context Free

To allow students to evolve design grammars, an evolutionary CFDG system
was developed using the parametric CFDG system. In the evolutionary CFDG
system, a parameter set in a template file defines the genotype for individuals
and the rules are used to express genotypes into phenotypes. An interactive
evolutionary system was first developed, where the phenotype (image) for each
individual in a population is displayed side-by-side. The interactive evolutionary
CFDG system displays each population of image-based phenotypes to allow users
to select one or more parent designs by clicking on them with the mouse. The
evolutionary CFDG system uses a standard one-point crossover operator and
per-gene mutation to generate children from parents.

/* $RA = [-1,1] */

/* $XA = [-1,1] */

/* $YA = [-1,1] */

/* $RB = [-360,360] */

/* $SB = [0.85,0.99] */

/* $RC = [-1,1] */

/* $XC = [-1,1] */

/* $YC = [-1,1] */

/* $RD = [-360,360] */

/* $SD = [0.85,0.99] */

startshape LINES2

rule LINES2 {

LINES1 { r $RA x $XA y $YA }

LINES2 { r $RB s $SB }

}

rule LINES1 {

LINE { r $RC x $XC y $YC }

LINES1 { r $RD s $SD }

}

rule LINE { TRIANGLE { s 0.025 1 }}

(a) Template source code (b) Renders

Fig. 2. A parameterised CFDG template with three rules and ten variables.

The evolutionary CFDG system was developed in Processing [6], a program-
ming environment that the students were already familiar with. The code to
the application was made available to the students allowing them to experiment
with writing fitness functions to replace user selection. Some fitness functions
such as surface area, X/Y symmetry, rotational symmetry, colour variance and
brightness were provided as examples. Students created new fitness functions to
guide the evolution of their parametric CFDGs.

3 Examples of student work

Examples of the outputs from evolutionary design grammars developed by stu-
dents can be seen in Fig. 3a, giving some indication the breadth of possible design
spaces. These examples were generated using the interactive evolutionary CFDG
system. An example evolution of a design grammar using an image-based fitness
function written by a student is given in Fig. 3b. The fitness function counts
the number of colour changes by scanning horizontally across the centre of the
image. This fitness function promotes complexity and in this example results in
a design using tightly-packed, spiralling squares with alternating colours.

(a) Designs evolved using three student-developed parametric grammars.

(b) Designs evolved based on a student-developed fitness function.

Fig. 3. Designs from (a) interactive and (b) non-interactive evolutionary systems.

Using the extensions to Context Free, students were introduced to design
grammars, parametric grammars, interactive evolutionary grammars, and finally
non-interactive evolutionary grammars. This progression gave the students the
opportunity to first learn about constructing design spaces before learning meth-
ods for searching them. All students demonstrated some understanding of how
the definition of parameters as genotypes and rules as the means of expression
worked together to define a design space.

Students were able to communicate the concepts they wanted to evolve us-
ing fitness functions, e.g., spikes, appendages, roundedness, gradients, pleasant
colour combinations, produced documentation showing they possessed a good
understanding of how GAs work and can be applied. We observed a varying
degrees of success when they came to develop those concepts into algorithms.
A minority of students were able to implement their fitness functions. Other
students had difficulty following the implementations of the provided fitness
functions but were able to apply and combine them to achieve results that they
found interesting.

4 Discussion

The interactive evolutionary CFDG system proved an effective way to teach
design students the principles of design grammars, parametric design and evo-
lutionary design. In contrast with previous teaching approaches, which involved
students experimenting with configurable but fixed problems for each class of
design system, the use of CFDG templates allowed students to implement their
own problem domains very quickly.

The parametric template system, in which parameters can be inserted into
any design grammar and interpreted as genes, allowed students to experiment
with altering design spaces and immediately see how they affect the search pro-
cess. This allowed students to experiment with the definition of their own geno-
types, their own genotype-to-phenotype expressions and their own fitness func-
tions. This allowed students to gain a deeper understanding of how the design of
problems, representations and fitness functions affects the evolutionary design
process. Students were able to experiment with the development of evolution-
ary systems with relatively little programming experience. Compared to other
methods of teaching evolutionary design systems we found this method to be
highly effective and enjoyable for the students to learn and experiment with.

Based on feedback from students, we believe our approach, based on a series
of extensions to Context Free, shows great potential in the teaching of generative
design systems to design students. Future iterations of this teaching method may
benefit from an increased focus on the graphical user interface to the extended
system. For example, to ease the implementation of fitness functions, students
may benefit from the addition of a graphical interface to select and combine a
set of existing fitness functions, as an alternative to writing code. This would
further lower the exposure of the students to the underlying implementation
while opening up the possibility for exploring the consequences of fitness function
design to more students.

References

[1] Glancey, J.: Secrets of the Birds’ Nest, The Guardian Online.
http://www.guardian.co.uk/artanddesign/2008/feb/11/architecture.chinaarts2008,
last accessed January 2009.

[2] Coyne, C.: Context Free Design Grammar. http://www.chriscoyne.com/cfdg/, last
accessed January 2009.

[3] Horigan, J., Lentczner, M.: Context Free. http://www.contextfreeart.org/, last ac-
cessed January 2009.

[4] Lapré, L.: Lparser. http://members.ziggo.nl/laurens.lapre/lparser.html, last ac-
cessed January 2009.

[5] Lintermann, B., Deussen, O.: Xfrog. http://www.xfrog.com/, last accessed January
2009.

[6] Reas, C., Fry, B.: Processing: A Programming Handbook for Visual Designers and
Artists. The MIT Press, 2007.

