Semi-automated Level Design via Auto-Playtesting
for Handheld Casual Game Creation

Edward J. Powley, Simon Colton, Swen Gaudl, Rob Saunders and Mark J. Nelson
The MetaMakers Institute, Games Academy, Falmouth University, UK
Email: {edward.powley, simon.colton, swen.gaudl, rob.saunders, mark.nelson } @falmouth.ac.uk
metamakers.falmouth.ac.uk

Abstract—We provide a proof of principle that novel and en-
gaging mobile casual games with new aesthetics, game mechanics
and player interactions can be designed and tested directly on
the device for which they are intended. We describe the Gamika
iOS application which includes generative art assets; a design
interface enabling the making of physics-based casual games
containing multiple levels with aspects ranging from Frogger-
like to Asteroids-like and beyond; a configurable automated
playtester which can give feedback on the playability of levels;
and an automated fine-tuning engine which searches for level
parameterisations that enable the game to pass a battery of tests,
as evaluated by the auto-playtester. Each aspect of the implemen-
tation represents a baseline with much room for improvement,
and we present some experimental results and describe how these
will guide the future directions for Gamika.

I. INTRODUCTION

Mobile gaming is an important part of game culture and
has become an everyday activity for a large fraction of our
society. Within mobile gaming, casual games, categorised
by relatively shallow learning curves, comparatively simple
game mechanics and relatively short time investment for an
engaging return, are extremely popular. Indeed, such games
have broadened the popularity of gaming, contributing towards
a recent shift in the demographic of game players, i.e., to
a more gender-balanced state with a higher average age
than a decade ago [1, pp.145]. Unlike music, photography,
writing, abstract art and many other areas where handheld
casual creator apps [2] have enabled consumers to become
creative producers, the creative act of game-making is not yet
fully supported on mobile devices. In section II, we partially
categorise handheld applications that empower game creation
and highlight limitations of existing tools.

A desire to reduce these limitations and further democratise
game design has led us to build the Gamika iOS application.
We believe it to be the first tool enabling entirely new casual
games (containing multiple levels with novel aesthetics, game
mechanics and player interactions) to be designed on a mobile
phone without requiring coding. One of our main contributions
here is a breakdown of a subset of physics-based casual games
into a set of components so that games can be built by
making choices for each part. In section III, we describe this
breakdown, and provide a description of the Gamika software,
focusing on how it enables the construction of game levels
through a copy-and-tweak methodology, involving generative
art assets, a mutation mechanism, drawing functionality, and
fine-grained tuning of the game components.

Gamika, along with some other mobile apps, enables the
production of clones of existing games, which are safe in
the sense that the gameplay has been pre-tested. However,

Gamika also empowers designers to produce entirely new
games with new game mechanics and untried gameplay. This
increases the need to extensively tune and playtest game levels,
a potentially tedious task that could reduce users’ enjoyment
of the app. Since we’d like the app to be fun to design as
well as play games in, we have endeavoured to make tuning
and testing of levels an entertaining experience. In section IV,
we introduce a puzzle/reaction game called Let it Snow, made
with Gamika, as a running example game for which playtesting
and tuning is required for each level. To aid designers in
rapidly producing levels, we have implemented an automated
playtester in Gamika, which can be watched while playing and
is configurable, as described in section V.

To further support designers in producing game levels,
we have implemented an automated tuning facility, which
can search for values of user-specified parameters which fix
various failing aspects of a level design. This functionality
is described via a case study in section VI. Here, a designer
first designs an original level and then plays it to find values
for the parameterisation of an imperfect playtester. Logs of
both human and computer gameplay, in addition to a parameter
sweep, highlight aspects of the game which aid the designer
in making new levels. The designer then specifies a test suite
that a game level must pass in order to be considered as part
of a game design. Finally, the ten produces five new levels of
Let it Snow by simply drawing one element of it in Gamika,
and letting the software fine-tune various parameters to find a
design which passes the tests.

The work here represents a proof of the principle that on-
device casual game creation, beyond producing clones and not
requiring coding, is possible. Our contribution is the whole
pipeline and the AI functionality embedded in Gamika, which
supports casual co-creation, rather than a focus on studying
and optimising one particular aspect. Each part of the Gamika
implementation is sub-optimal and can be improved via better
user interaction design, faster search techniques and more
sophisticated parameterisations, which will be informed by the
results of the case study, as described in section VII.

II. BACKGROUND

Compton and Mateas [2] introduce the term casual creator
to describe a piece of software with which users can quickly
and easily create artefacts such as musical compositions, artis-
tic imagery such as filtered digital photos, abstract artworks
and graphic designs, and texts such as stories and poems. We
are interested in casual creators that work directly on handheld
devices, rather than those which merely enable deployment
to such devices, and in particular those which allow for the
creation of digital games or game levels.

While there are many environments in which novice game
designers can learn the craft, such as GameMaker: Studio
(yoyogames.com), Scratch (scratch.mit.edu) and Stencyl (sten-
cyl.com), these require PC-based development. Of the environ-
ments that enable on-device game/level creation, the following
is a partial characterisation:

® Apps which require learning programming skills. Some, such
as Scratch Jr (scratchjr.org) or HopScotch (gethopscotch.com),
are designed to introduce children to coding.

® Apps which enable only the skinning of existing game
templates, which allows for some level of creativity, but not the
entire game making experience. Examples here include Coda
Game (codarica.com) and Playr (playr.us).

® Apps which enable the authoring of fairly complex game
levels for an existing game. An example here is Createrria 2
(incuvo.com), where levels of a side-scrolling platform game
can be created on-device. These empower creative expression,
limited to the provided characters, rules and game worlds.

Of particular note here is Sketch Nation (sketchnation.com),
where the final two categories above are combined, i.e., users
can create complex levels within a number of templates.

We defined a space of casual games by factoring Gamika
games into a set of numerical parameters (elaborated in the
next section). The idea of defining a space of games has
similarities to systems such as VGDL [3] and PuzzleScript
(puzzlescript.net). With these systems, games are mapped into
a space of hierarchical code structures, whereas Gamika uses
a space of numerical vectors. Gamika also differs in its use of
simulated physics. That is, while those systems define explicit
movement rules for in-game objects, Gamika specifies only the
physical properties of the objects and the environment, from
which movement emerges. This reliance on emergence changes
how the space is navigated: on one hand, it reduces the ease
of finding specific designs that users may have in mind, but on
the other, it increases the chances of the parameters combining
in unanticipated and serendipitous ways.

One of our ultimate aims is for Gamika to generate
entire casual games automatically, and the work presented on
automatically fine-tuning game levels is the first step towards
this. Automatic generation of game levels has been looked at
for both VGDL [4] and PuzzleScript [5] [6], in addition to a
variety of systems generating Super Mario Bros. levels [10].
Nelson and Mateas [8] formally modularise recombinable
game mechanics, so that users can define novel game variants
and get automated feedback on properties such as playability,
via automated theorem proving. Cook et al’s ANGELINA
system is very influential in automated game generation [11].
There has also been work on defining generative spaces of
games in terms of the games’ semantic and narrative content,
mapping sprites to a relatively fixed set of mechanics [7], [9];
here we focus on the space of mechanics rather than theme
or meaning, but in future work Gamika may branch out from
abstractly themed games to include such elements.

As described in section V, Gamika provides a configurable
automated playtester to aid designers in making game levels.
For such playtesting, it would initially seem natural to choose
a method that is capable of playing any general game (or at
least any game expressible in the system). The results of the

General Video Game AI (GVGAI) Competition [12] suggest
that game tree search approaches, particularly Monte Carlo
Tree Search (MCTS), are strong in this area. As well as the
grid-based games that have been the focus of the GVGAI
competitions thus far, MCTS has been demonstrated to work
well for physics-based games [13]. In the domain of game
generation, the Mechanic Miner system by Cook et al. [14]
uses breadth-first search as a playtester to evaluate generated
game mechanics. Reinforcement learning methods such as
deep @ learning have also been demonstrated to work well
for general videogame playing [16].

One of our design goals is for the playtester’s decision-
making process to be transparent to the user so that they can
design Al-bots to play their game level, and enjoy watching
the bot play. Game tree search is conceptually simple, but
rarely yields a satisfying explanation as to why the Al player
chose a particular action. Reinforcement learning is even less
comprehensible to the non-expert. For our purposes, easily
explained tactics and strategies are preferable to a trained
“black box”. Another design goal is the ability to generate or
tweak a game with respect to a fixed strategy. The success of
search and learning based approaches in general game playing
is precisely because they adapt to the game at hand, which puts
them at odds with this aim. Thus, as described below, we opted
for a simple rule-based player, whose rules are parameterised
and exposed through the user interface. Whilst the playtester
is not particularly sophisticated in computational intelligence
terms, it is well-suited to our aims with the Gamika project.

III. A BREAKDOWN OF PHYSICS-BASED CASUAL GAMES

The Gamika tool is an iOS application developed in the
Swift programming language using the SpriteKit game devel-
opment library’s built-in 2D physics engine, a modified version
of the well-known Box2D engine (box2D.org). Each Gamika
game is an ordered list of game levels, where a level is a triplet
of an optional text explaining the rules for players; an optional
drawing represented as a vector graphic; and a list of numerical
values for a set of 284 parameters which define how a set of
game objects look, move and interact with each other and with
the player’s touches. Starting by analysing a number of classic
arcade games like Frogger and Asteroids, and supplementing
these with analyses of novel games, we have organically grown
the set of parameters. Parameters were added until we were
satisfied that the game levels they can define are sufficiently
diverse, interesting and engaging.

There are three classes of physics object in a level: multiple
friend objects, multiple foe objects, and the single controller.
The naming of objects as friends/foes allows designers to at-
tach meaning to game objects, to more easily manage the large
number of game parameters, but the user is at liberty to ignore
this. All objects have a rigid physics body and a collision
shape. One option for the controller is for it to be a decorative
abstract art image generated by the ELVIRA evolutionary art
system [17] and the genomes and a set of thumbnails of 1,000
supplied images. The images cover different styles, giving a
wide range of choices, and each genome can be mutated or
more carefully varied, so designers have a good chance of
expressing an aesthetic of interest to them. The first set of
numerical game parameters define the mathematical functions,
blurring regime and post hoc transformations which dictate

how the art asset is generated, as per [17]. Alternatively, the
controller can be a hand-drawn shape created within the design
interface, which can optionally be combined with an art image,
which opens up many more aesthetic possibilities. The contour
of the controller image is traced to determine its physical
shape, hence the choice of the controller is not purely aesthetic,
but can also be an important factor in gameplay. The numerical
parameters control the following aspects:

® The properties of the friends/foes. These control the object
size, shape, colour, sprite image, how the calculation of their
boundary is performed, and some physical properties such as
their restitution (bounciness), mass and damping.

® The lighting effects applied to the background and game
objects. These control effects such as spotlights, ambient light,
the calculation of a normal map for the background and
controller image, and the lit appearance of the friend/foes.

® The spawning regime for the friends/foes. These control
the spawning positions within time-varying ranges, spawn
frequencies, total number of each object allowed, and some
spatial constraints for the spawning, such as minimum/maxi-
mum distances from each other and being fixed on a grid.

® The movement of friend and foe objects both at the start of
the level and during the game. These control the force fields
acting on the objects via directions and strengths, with pa-
rameters for noise, friction and angular/linear drag on objects,
speed limits, whether objects can rotate or not, and how joints
such as pins, springs and sliders act on the objects.

® The collisions between friends, foes and the controller.
These control whether objects stick, bounce, explode and/or
change types on collisions, and timings for these, which screen
walls are active and how bouncy they and the controller are,
as well as how clusters form and when they explode.

® The user interactions which move the controller and affect
the friends/foes. Tapping, dragging and swiping actions are
caught, and the controller can be attached by springs, pins
and horizontal/vertical sliders, and can be subject to movement
and/or rotation by player touches. Player taps can also explode,
halt, reverse or change the type of the friends/foes, and taps
on the background can spawn more objects.

® The progress calculations which alter three counters: score,
health and lives (naming suggestions the designer can choose
to ignore). Each calculation adds up to five measures pre-
scribed by events on friends/foes. Events include collisions,
explosions, spawning, staying on screen, clusters being formed,
and objects entering scoring regions.

® The end-game criteria which dictate how the progress
calculations and/or game duration terminate the game. These
control what constitutes a win or loss, how the overall score
is calculated and whether high-scores are recorded.

Many games can be described in terms of an object with
physical properties and spawning rules. Thus, they can be
expressed in Gamika. As an illustration, a facsimile of the
classic arcade game Frogger can be described as follows.
Friends are spawned at the left and foes at the right of
the screen and are attracted towards the opposite side by a
force-field. The controller is drawn (possibly as a frog) at
the bottom of the screen, and can be moved in the four

Fig. 1. (a) basecamp, mutation, art asset, drawing and parameters screens
from the Gamika design interface (b) Five levels in the Pendulands game.

cardinal directions by the player swiping the screen. If the
controller collides with a friend or a foe, the game is lost. If
the controller reaches the top of the screen, the game is won.
Likewise, a simple Asteroids version has the controller (ship)
moving towards where the player taps. Friends (bullets) are
spawned continuously at the controller’s position and move in
the direction in which the controller points. At the start, foes
(asteroids) are spawned randomly on screen and move subject
to a noise field. Friends and foes are destroyed upon collision.
If the controller collides with a foe, the game is over.

The design interface includes a basecamp screen, from
which the user can load one of several preset games, including
new original games and homages to classic ones. The main
mode of use for the app is that the user loads a basecamp
game and modifies it, from a simple re-skinning to a complete
change of game mechanics. We decided not to provide the
option of creating a new game from scratch, to avoid the dis-
couraging effect of the blank canvas. However, it is important
to note that no part of the game design is concealed from the
user, so any game that can be expressed in Gamika can be
created by modifying any existing game.

The basecamp screen is the first showing in figure 1. The
design interface also includes a mutation screen, shown second
in figure 1. One advantage to having games decomposed into
numerical parameters is that they can easily be mutated. The
mutation screen has nine buttons arranged in a dial, with
each button representing a different aspect of a game level,
such as movement, collisions, lighting, etc. The chosen button
and the degree by which the dial is rotated dictates which
design aspects are varied, and by how much, with bespoke
schemes used when the mutation is initiated. Figure 1 also
shows the art asset selection screen where the chosen image
is generated from an underlying genome as per [17], and
the drawing screen, which has a number of editing facilities.
Finally, figure 1 shows one of the screens where parameters
can be altered directly via a slider interface.

Figure 1 shows five levels from a game called Pendulands.
Here, the designer (second author) had the idea of having balls
spawning from the sides and being attracted to the centre, with
any pair of balls exploding if they collide. Players have to
move the controller (a circular abstract art image) in order to
be underneath the balls for long enough for them to stick to the

controller. Once stuck, these collected balls are then under the
player’s control and need to be protected. The designer used
the mutation screen to explore player interaction and lighting
design. Two mutations led to important aspects of the game:
(i) the player interaction mutation added a spring to the game
controller, so that when the player lets go, it springs back to
the centre, usually causing collected balls to explode against
uncollected ones, and setting progress back (ii) the lighting
mutation reduced the ambient lighting significantly, and added
a spotlight to the position of the player’s finger.

Given that dragging the controller directly causes the
player’s finger to obscure it, the best way to play the game
is to drag the controller off-centre. Dragging off-centre means
that the controller is always in the shadows, as the only light
in the game is at the player’s finger, which is kept in contact
with the screen at all times to avoid the controller springing
back. The designer built on this aspect of gameplay with a
grungy aesthetic, achieved via the use of normal maps. Once
the first level of Pendulands was made, fifteen more levels
were produced relatively quickly, sometimes with only 10
minutes of effort. Each level has similar elements, including a
circular controller, dark/grungy aesthetic and the need to catch
five balls on the controller to complete the level. However,
each level includes a different game mechanic, achieved by
tweaking the nature of the balls, where they spawn, what
happens when they collide (bounce, stick or explode), how
fast they are and how they move. Pendulands is one of around
30 games that have been developed with Gamika so far.

IV. RUNNING EXAMPLE: LET IT SNOW

For the remainder of the paper, we will use a running
example of a particular game called Let it Snow to describe
how advanced functionality in Gamika provided automated
assistance to the designer (second author) when making the
game. In Let it Snow levels, see figure 2, the controller is a
drawn item, with the art asset being used purely as a backdrop.
The player can drag the controller (which we call ‘jiggling’ it).
Blue (rain/foe) and white (snow/friend) balls are spawned in
random positions at the top of the screen and fall towards the
bottom. Balls are spawned at a rate of three white and three
blue per second until 20 of each colour are on-screen. Balls
bounce off those of the opposite colour, the controller and the
screen walls. When two balls of the same colour collide, they
stick together. If a cluster of four or more balls of the same
colour forms, the cluster explodes. An exploding ball causes a
new ball of the same colour to spawn at the top of the screen.

Players gain one point for each white ball that explodes and
lose one point for each blue ball that explodes. Players can tap
blue balls, which causes the tapped ball to explode, tapping
white balls has no effect. While tapping a blue ball will lose
the player a point, it may cause a cluster of whites to form
and explode which will score more than the loss. Jiggling the
controller can unlock occasional stalemates. The aim of the
game is to reach a score of 100 points in a time which beats
the player’s current personal best. If the level is completed
within 60 seconds, the player can move on to the next level.

Let it Snow is a difficult, fast moving, reaction game, and it
takes some practice to become proficient at it. Novice players
tend to fail to get control of the game and scores can plummet.

Fig. 2. Screenshots from Let It Snow level 1 showing the auto-playtester
playing the level, and from un-fixed levels 2 to 6.

An interesting aspect of the gameplay is that, from time to
time, an arrangement of balls arises where no more clusters
are formed; hence the game comes to a halt as no new balls
are spawned. In these quiescent moments, the game takes on
a puzzle character, as the player can take their time to decide
which blue ball to destroy in order to gain the most points
through whites forming clusters. The designer discovered that
a good strategy for players is to concentrate on getting to
these quiescent moments, then carefully keeping control of the
situation through selectively destroying blue balls. A strategy
to make the game reach quiescent moments is to react to any
potential cluster of four blues and stop it forming by destroying
one of them. If the player is successful in this, eventually the
blues and whites become distributed over the five columns of
the controller, locked out of clusters by balls of the opposite
colour.

A winning strategy is to get all the blue balls locked in
singletons, pairs and triplets at the bottom of the screen. Then
only white balls spawn and land on those exposed above the
locked blues in such a way that they continuously form groups
of four and thus allow more whites to spawn. At this stage,
as only whites are being spawned, the game has the look of
snowing (hence the game’s name), and players can sit back
and watch the score increase rapidly as it snows, although
expert players may use a more proactive tactic. An expert
player can usually reach 100 points within 60 to 90 seconds,
with novices often taking more than three minutes to complete
level 1. Let it Snow is quite an addictive and engaging casual
game, but presented a number of difficulties for the designing
of new levels. We explore how automation has helped address
some of these difficulties in section VI, after we describe how
automated playtesters can be configured to play the game.

V. AUTOMATIC PLAYTESTING

To support designers in making casual games, we have
implemented a configurable automated playtester which can be
parameterised on the device to describe an Al-bot to play game
levels. Currently, the exposed playtester design parameters are
not as extensive as those for level design and are rather focused
on playing Let it Snow; we intend to grow the parameter set in
future work. The automated playtester “ticks” at a frequency of
once per game frame (normally 60 per second), and analyses
the state of the game. The designer chooses a number of factics
for the bot to employ, each formed of a condition or a pattern
to check for, and an in-game action to execute if the pattern
is found. The tactics are arranged in priority order, i.e., the
(i + 1)th tactic takes effect only if the ith tactic does not.
The following are the tactics used in a Let it Snow playtester,
which through design and experimentation we have found to
be a human-competitive player for the game.

® Stop blue clusters from forming. If two blue balls are close
to one another, and they are not already in a cluster, and if the
balls colliding would form a cluster of four or more, then tap
the faster moving ball. “Close to one another” means that either
the two balls are currently within a threshold distance of each
other, or they are predicted to be before the next Al tick.

® Pop blues blocking whites. If a blue ball is touching two
or more white balls which are in distinct clusters, and those
clusters contain four or more balls in total, and the blue ball
has met this criterion continuously for 1 second (a value which
is changeable), then tap the blue ball.

® Tap if quiescent. If 2 seconds (a value which is changeable)
have passed with all balls having zero velocity, then tap a blue
ball that is touching a large number of white balls and is itself
either unclustered or in one of the smallest clusters.

® Jiggle if whites are stuck. If 5 seconds have passed without
a white ball being able to spawn, shake the board in a small
random direction.

® Do nothing. If no above conditions are met, do nothing.

The “perfect” version of the playtester exhibits super-
human accuracy and reaction speeds. We also consider an
“imperfect” playtester, with a limit imposed on the number
of actions per second and random noise added to its tap
positions. We analysed logs from three games played by the
first author, and identified his maximum number of taps per
1-second window was 3 and the average distance from the
centre of a tapped ball was 10 pixels. Thus, we restrict the
imperfect player to 3 taps per second and add random noise
with magnitude 2 x 10 = 20 to its taps. Additional experiments
using a small random time delay in bot actions proved to be
far too detrimental to the bot’s performance: as implemented
currently, the “stop blue clusters from forming” tactic results
in the bot waiting until the last possible moment to tap the
incoming blue, so even a small delay results in a high miss rate.
A tactic that tried to anticipate blue clusters further in advance
would likely solve this problem. We acknowledge that the
above is a basic attempt at mimicking the limitations of human
players, but it does serve to dull the automated player’s super-
human qualities. Creating playtesters that more convincingly
try to model human players such as [15], and possibly the user
in particular, is a subject for future work.

As per our desire to make interacting with all aspects of
Gamika enjoyable, we have visualised the playtester so the
designer can see exactly how the bot is playing the game, and
enjoy the experience. The first screenshot in figure 2 shows the
auto-playtester’s simulated hand interacting with the game. We
have also added a slider to the design interface which forces
the auto-playtester to play at 1, 2, 4 or 8 times normal speed.
The speed up is achieved by increasing the physics world speed
in SpriteKit which unfortunately means that the playtester is
exposed to proportionally fewer ticks, and the bot design had
to be altered to cope with this. At higher speeds, therefore,
the playtester’s ability to play the game is reduced, but we
have found that at four times normal speed, it still plays at
human-comparable levels. The speed up allows designers to
more quickly understand game levels through playtesting, and
speeds up the automated fine tuning, as described below.

VI. CASE STUDY

While the designer of both Pendulands, described above,
and of Let it Snow is the same (the second author), the design
process has been quite different. For Pendulands, the initial
level took around 2 hours to perfect, and subsequent levels
took much less time — for some, it involved making some
changes to the game mechanic and aesthetics, then playing the
game around 10 times to test whether it was difficult enough,
but not too difficult. Let it Snow is perhaps a more interesting
game, with simple rules yet high difficulty, and both a puzzle
and reaction element, and potentially addictive qualities, which
may drive players to want to improve their high score.

However, the designer found making levels for Let it Snow
much more difficult than for Pendulands. In particular, the
random nature of the spawning of the balls introduced quite a
difficult design problem. That is, the designer found that the
game is heavily, but not entirely, luck-based, and observed
situations where an extremely lucky run of balls allows a
novice player to achieve an expert-level score with hardly any
interaction at all. Hence, it was difficult to tell whether it was
possible to get better through practice, which is rather a pre-
requisite for an enjoyable game of this type. It was for this
reason that the designer configured the auto-playtester as per
section V, and used it to analyse level 1, as described in the
following subsection. Making new levels was also a challenge,
and the designer relied on automated fine-tuning of 8 game
parameters, guided by the auto-playtester, as described in the
second subsection below.

A. Automated Playtesting Analyses

Let it Snow level 1 is on the verge of being too affected by
randomness to provide viable gameplay. Indeed, the designer
struggled to understand whether the use of tactics helped get
better scores, as it is possible to play quite skillfully using
various tactics, yet on occasion still perform poorly due to
bad luck. Hence, the designer first used Gamika to produce
game logs of both a human player (author 1) and the “perfect”
auto-playtester. These logs are presented in figures 3(a) and
(b) respectively. We see that in the human log, the score (top
blue graph) dips during the early stage of the game, as the
player struggles to get control of the level. Control is initially
achieved through a quiescent moment, and these are achieved
throughout the game. This was a trend seen in multiple logs

N EE YT T

(d)

friend speed

— Time
Score
m— QieSCENCE

max friends

K
)

friend spawn rate

)

friend radius

Normalised Game Qualities (quiescence, time, score)

-30 -20 -10 o 10 20 30 -30 -20 -10 0

Friend Parameter Variation

Fig. 3.

max foes

J __
ST N

10

Foe Parameter Variation

(b)

foe speed

Occurrences

20 30 40 50 60

Game time (in-game seconds)

70 80 90

(M

140000,

120000

100000

80000

Occurrences

60000

40000

20000/

20 30 0
score <-30 time <20 time >80 quiescence taprate tap distance

Failure reason

(a) Log of human playing Let it Snow level 1 (b) Log of “perfect” auto-playtester playing Let it Snow level 1. (c)/(d) Analysis of the change in three

normalised game qualities (quiescence, time and score) as four parameters for friend/foes are varied (e) Discretised game play time for the tuning sessions (f)

Occurrences of each test failure in the tuning sessions

and confirmed the designer’s hunch that aiming for quiescence
early on is a good tactic.

The auto-playtester logs show that the bot was able to
complete the level with perfect application of the tactics de-
scribed in section V above, i.e., without requiring the quiescent
moments to reflect on the state of the game. Hence, the bot can
play successfully in a different way to the human player, and
it was encouraging that it played to a high standard (indeed,
it completed level 1 in around 60 seconds on the second
playing). The designer gained the biggest insight into the game
when they compared on-screen the “imperfect” bot against the
“perfect” one: double checking the logs confirmed that more
skilful play does indeed lead to better completion times.

The designer decided that new levels would be created
with just a change of drawn game controller and backdrop
image, as in figure 2. The designer found with level 2, the
way in which the balls bounced off the new controller (i.e.,

circles in level 2 rather than vertical lines in level 1), and
the way the balls are collected in the gaps differently made
the level feel sufficiently novel compared to the previous one.
However, after designing level 2, he found that the game was
even more difficult than level 1 because quiescent moments
never happened. After some experimentation, the designer
realised that to achieve quiescent moments, the number of balls
allowed on-screen at any one time needed to be reduced. To the
designer’s taste, this reduced the fun of the game, as it was less
dynamic. On experimenting with other ball properties, namely
the size, speed and spawning rate, the designer found that these
properties could also be used to improve the game design.

The designer suspected that the relationship between the
ball properties and aspects of the level such as completion time
was non-linear. To investigate this, they returned to level 1 and
used Gamika to perform a parameter sweep of the level. This
was achieved by systematically altering the eight parameters
(size, speed, spawning rate and maximum allowed on-screen

for both ball types) within the range —30% to +30% around
their original value, using a 10% step-size and employing
ten independent trials for each variation of a parameter. This
resulted in a total of ((8 x 6) 4+ 1) x 10 = 490 runs of each
altered level, which took around 6 hours of processing on the
device. For each of the parameters, Gamika calculated the
mean value for the number of quiescent moments p (with
a quiescent moment defined as a continuous stretch of time
where no ball has a non-zero velocity), the score the player
achieved s and the time until the level finished, §. The raw
values were normalised as follows: s within the range of
[—30,50] points, ¢ within the range of [0,90] and p within
the range of [0, fmaz], and mapped to the interval [—1, 1].

Figures 3(c) and (d) show the results of the parameter
sweep. As suspected, the non-linear nature in which the game
design affects scoring, completion time and the number of
quiescent moments is highlighted. The designer found that the
parameter sweep was very informative and will no doubt help
with future level design. In particular, the analysis highlighted
certain sweet spots which can be exploited to fix faulty
levels, e.g., if levels are too easy, increasing the foe speed
by 10% would increase the average game completion time.
One exception to non-linearity is the approximate positive
correlation of ball size with the number of quiescent moments.
This was surprising to the designer, as they had expected
the opposite, as larger balls tend to have more collisions,
hence more explosions and spawning and a more dynamic,
less quiescent level. However, on investigation, it appears that
smaller blue balls are less likely to get stuck in non-exploding
clusters, as they have more room to move around in, which
leads to clusters forming more often and less quiescence.

B. Automated Fine Tuning of New Levels

We want to enable people to make experimental games
with Gamika, without having to spend an inhibitively long time
designing and playing them. To do so, we intend for the app to
have intelligent search methods that can take a nearly-finished
level and fine-tune various parameters so that the altered level
passes a series of user-defined tests. In a baseline experiment
to investigate the potential for this, the designer created levels
2 to 6 of Let it Snow as per figure 2. The levels were altered
to end after 50 points, rather than the original 100 points,
to improve testing speed, and a timeout of 90 seconds was
applied. Using Gamika, the designer defined a test suite for
new levels as follows: a level fails if (a) at any time, the score
reaches -30 or below, or (b) the bot completes a level in less
than 20 seconds or more than 80 seconds, or (c) the game
contained fewer than two quiescent moments, or (d) the tap
rate was more than 3.5 per second, or (e) the average distance
between consecutive taps was more than 200 pixels.

The designer specified that the size, speed, spawning rate
and number-allowed parameters for both friends and foes
should be the subject of random variation. These were chosen
as the parameters that have the largest effect on gameplay,
without having such a large effect as to make the game no
longer recognisable as Let it Snow. For a given newly-designed
level, Gamika randomly varies each of the eight parameters
within —30% to +30% of its value for level 1. A frial involves
a tweaked level being played three times at four times the
normal speed by the “perfect” auto-playtester. If any of the

TABLE 1. CURATION ANALYSIS FOR Let it Snow LEVELS 2 TO 6
Level Trial Mod. Time Prop. Tot.
2 478 2 Th 19m 3/5 16
3 408 1 1h 04m 2/5 12
4 400 2 1h 00m 3/5 14
5 7531 3 17h 52m 2/5 6
6 402 1 0Oh 50m 3/5 11
av. 1843 1.6 4h 25m 2.4/5 11.8
av2 422 1.5 1h 3m 2.75/5 13.25

three playthroughs fails any of the above tests, the whole trial
is discarded. If, however, all three playthroughs pass the tests,
then the altered level is saved to the app, and a new alteration
is sought, which continues until the user stops the process. We
have found that these tests discard levels for being too easy
or difficult, and also levels that cater somewhat to the super-
human abilities of the playtester, which can be relentlessly
accurate, where a person probably cannot. This testing set up is
quite efficient, as the “perfect” bot is the fastest at completing
a level, and the order of the tests means that many broken
levels fail very fast, often within a few seconds.

We undertook the random approach to see whether suc-
cessful tweaks are possible automatically and to set a baseline
against which more intelligent search methods will be assessed
in future. Not surprisingly, we found that the random approach
was not particularly efficient, rejecting tens of thousands of
tweaked games on average before finding one that passed
the tests for three plays. Note that we ran these experiments
overnight in parallel on a simulated desktop version of Gamika.
Figure 3(e) portrays the proportion of games which finished
in certain time bands. Note that those finishing between 80
and 90 seconds were those which timed out. We see that a
large proportion of the games ended quickly, in 20 seconds or
less (or 5 seconds at 4x physics speed). This is explained
in figure 3(f), where the breakdown of the reasons why
levels failed is given: the test to see whether a game is so
difficult that the very able auto-playtester gets to a -30 score
is very effective, and this quickly rules out bad levels. The
high proportion of games that fail due to lack of quiescence
confirmed the designer’s view that producing a level to achieve
such quiescent states was difficult. While the tap distance test
was used to discard some trials, the tap rate was not.

To assess whether the random variation and auto-testing
scheme works, the designer undertook a curation analysis
(as introduced in [18]) of the tweaked Let it Snow levels.
In particular, for each level, he played the first five output
variations in the order in which they were produced. Each
variation was played 10 times, and the designer decided
whether the level was good enough to be added to the game, or
should be discarded, recording the reasons for either decision.
The curation analysis results are presented in table 1. For level
2, the second (Mod)ified level shown to the designer, after
478 (Trial)s and a (Time) of 1 hour 19 minutes, was deemed
the first one that was good enough. The (Prop)ortion of the
first five modified levels shown to the designer which were
deemed good was %, and these came from a (Tot)al crop of
16 generated over a 48 hour period. We see that the other
levels have similar results, with level 5 being an exception.
Here, only six levels passed the battery of tests in 48 hours
and the first good one came after 17 hours 52 minutes. This
level is clearly an outlier and suggests the controller drawn
in this case admits a much smaller space of playable levels.
Ignoring this outlier, the average waiting time for a good level

was around 1 hour, which, while clearly still too long to wait,
is encouraging for a random search. The line marked av2 in
table I provides averages for the four levels excluding level 5.

Of the levels that the designer saw but rejected, the main
failure was that the level was too easy, encouraging too passive
a playing style because the snowing moments happened too
easily and the player was not actively able to improve their
completion time. Some of the games were rated as very good
by the designer. Sometimes this was because they had the feel
of level 1, but for others, it was because they were quite novel,
e.g., the second modified version of level 6 was relatively slow
moving and had a greater emphasis on the puzzle element of
the game, with very interesting quiescent moments.

VII. CONCLUSIONS AND FUTURE WORK

With the work presented here, we believe that we have
demonstrated in principle that novel, interesting and engaging
casual games which are truly more than levels of an existing
game world, or skinnings of templates can be produced on a
hand-held device without the requirement for coding. With the
minor case study of the Pendulands game and the major case
study of Let it Snow, we have shown that the Gamika app
has much potential to help democratise game design so that
broader sections of society can make digital games. Let it Snow
is the kind of difficult to design game that requires automated
assistance in producing levels. We showed that an automated
playtester could be designed in Gamika that could play Let
it Snow levels to a (super) human standard and that getting
the Al-bot to play the levels on the device was (anecdotally)
entertaining, and could elucidate valuable insights into game
levels. We further showed that a random search for tweaks of
game parameters, with levels tested by the playtester, could
be used in semi-automated game design, where Gamika fine-
tunes game mechanics to find suitable modifications of levels.
The results from this approach for four of five new levels of
Let it Snow were encouraging.

While we have shown in principle that the approach is
viable, there is much work on all aspects which will need to
be carried out before Gamika can be released commercially,
which is our intention. In particular, we are currently under-
taking the following improvements to Gamika:

® Further expanding the space of games available through
the app, by implementing more intelligent behaviours in the
friends and foes, possibly via the on-device specification of
fitness functions and behaviour trees.

® Improving the user interface to the game design parameters,
employing more drag-and-drop functionality and expanding
what can be defined through the drawing interface.

® Making the automated playtester much more generic so that
it can be configured to play a wide range of games. We also
plan to experiment with an approach to training the playtester
through play coupled with structured answering of questions,
which will hopefully be entertaining, in a pedagogic way.

® Implementing more intelligent fine-tuning search techniques.
The random approach has provided a baseline, but it takes
far too long to find viable solutions. Hence, we have started
work on a hill-climbing method and we will also investigate
evolutionary and constraint solving approaches.

We agree with Liapis et al. [19] that videogame design
is a killer application for Computational Creativity research
[18], and we are very interested in Gamika becoming a cre-
ative game designer, much like the ANGELINA system [11].
Moreover, we believe that Computational Creativity is ready
to have an impact on gaming culture, and we hope to help
bring this about through the Gamika app, which will co-create
games with designers from all backgrounds, complimenting in
many people the joy of game playing with the joy of game
design.

ACKNOWLEDGMENTS

This work is funded by EC FP7 grant 621403 (ERA Chair:
Games Research Opportunities). We are grateful to the many
people who tested Gamika and provided valuable feedback.

REFERENCES

[11 J. Juul, A Casual Revolution: Reinventing Video Games and their
Players. MIT Press, 2009.

[2] K. Compton and M. Mateas, “Casual creators,” in Proceedings of the
Sixth International Conference on Computational Creativity, 2015.

[3] T. Schaul, “An extensible description language for video game,” in IEEE
Trans. Comp. Intell. AI Games, 2014.

[4] T. Nielsen, G. Barros, J. Togelius, and M. Nelson, “Towards generating
arcade game rules with VGDL,” in Proceedings of the IEEE Conference
on Computational Intelligence in Games, 2015.

[5] C.-U.Lim and F. Harrell, “An approach to general videogame evaluation
and automatic generation using a description language,” in Proceedings
of the IEEE Conference on Computational Intelligence in Games, 2014.

[6] A. Khalifi and M. Fayek, “Automatic puzzle level generation: A general
approach using a description language,” in Proceedings of the First
Workshop on Computational Creativity and Games, 2015.

[71 M. J. Nelson and M. Mateas, “An interactive game-design assistant”,
in Proc. of the Intl. Conf. on Intelligent User Interfaces, 2008.

[8] M. J. Nelson and M. Mateas, “Recombinable game mechanics for
automated design support,” in Proc. of the AIIDE Conference, 2008.

[9] M. Treanor, B. Blackford, M. Mateas, and I. Bogost, “The micro-
rhetorics of Game-o-Matic,” in Proceedings of the Procedural Content
Generation Workshop, 2012.

[10] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A
comparative evaluation of level generators in the Mario Al framework,”
in Proceedings of the Foundations of Digital Games Conference, 2014.

[11] M. Cook, S. Colton, and J. Gow, “The ANGELINA videogame design
system, parts I and IL” IEEE Trans. Comp. Intell. AI Games, 2016.

[12] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas, A. Couetoux,
J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general game playing
competition,” IEEE Trans. Comp. Intell. AI Games, 2015.

[13] D. Perez, E. J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis,
P. I. Cowling, and S. M. Lucas, “Solving the Physical Travelling
Salesman Problem: Tree Search and Macro-Actions,” IEEE Trans.
Comp. Intell. AI Games, 2013.

[14] M. Cook, S. Colton, A. Raad, and J. Gow, “Mechanic miner: Reflection-
driven game mechanic discovery and level design,” in Proceedings of
the EvoGames Workshop, 2013.

[15] S.E. Gaudl, J.C. Osborn, and J.J. Bryson, “Learning from Play: Fa-
cilitating Character Design Through Genetic Programming and Human
Mimicry,” in Progress in Artificial Intelligence: EPIA 2015, 2015.

[16] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, 2015.

[17] S. Colton, M. Cook, and A. Raad, “Ludic considerations of tablet-based
evo-art,” in Proceedings of the EvoMusArt Workshop, 2011.

[18] S. Colton and G. Wiggins, “Computational Creativity: The final fron-
tier?” in Proceedings of the 20th ECAI, 2012.

[19] A. Liapis, G. Yannakakis, and J. Togelius, “Computational game
creativity,” in Proceedings of the Fifth International Conference on
Computational Creativity, 2014.

