

RE-THINKING OPTIMIZATION AS A COMPUTATIONAL DESIGN
TOOL: A SITUATED AGENT APPROACH

SOMWRITA SARKAR, JOHN S. GERO AND ROB SAUNDERS
Key Centre of Design Computing and Cognition
University of Sydney
Email address:{somwrita, john, rob} @ arch.usyd.edu.au

Abstract. This paper presents a situated agent for design optimization.
A situated agent captures, learns from and re-uses the interactions
which it has with its external environment, forming the basis for
experience based knowledge building in an agent. An agent is
developed for design modeling, reformulation and algorithm selection
– a class of tasks in design optimization traditionally performed by
humans based on their experience, and hard to automate.

1. Motivation

Optimization has long been a predominant approach supporting automated
design in architecture and engineering. Space layout problems, for example,
have been automated using a number of approaches (Liggett, 1985; Gero,
1985; Jo and Gero, 1995; Gero and Kazakov, 1997; Michalek and
Papalamros, 2002). Optimization models designing as search. It finds the
“best” design for some expected performance from a well structured, fixed
solution space (Wilde, 1979; Radford and Gero, 1988; Parmee, 1998;
Papalambros and Wilde, 2000). For most automated algorithms, the structure
of the model remains unchanged throughout search, as does the behavior of
the search process. Activities like design modeling, reformulation and
algorithm selection remain primarily human endeavors.

In architectural design, subjective and qualitative criteria are difficult to
model mathematically (Michalek and Papalamros 2001). Nonetheless, they
are very important for overall design performance. Further, it has been
shown (Baya and Leifer, 1995) that designers spend a significant amount of
time assessing design information on a non-quantitative level of abstraction.
In general, tools fail to support or assist the designer during conceptual
design which is when modeling and reformulation are the most pronounced
activities. Designers can often produce better designs using heuristics learnt
through personal experience. They transfer design knowledge from past
experiences into future ones, and treat modeling, reformulation and search as
mutually interacting concurrent activities. Suwa et al. (1998) observed from
studies conducted on designers that they use sketches not just as external
representations, but also as a mode of interaction with the developing design
leading to unexpected discoveries and inventions of new design issues. This
dynamic, interaction based experiential learning enables a different way of

2 S. SARKAR, J.S. GERO AND R. SAUNDERS

designing, what Schon and Wiggins (1992) refer to as the “interaction of
making and seeing”. This is in contrast to the behavior of static, non-
interactive optimization tools.
 Our aim is to develop a computational tool that does not remain static and
unchanged by the patterns of its use (Gero, 2003), but learns, builds and
modifies design knowledge that arises through the experience of solving
design problems. Drawing from cognitive science based approaches of
situated learning and action (Clancey, 1997), situatedness (Gero 2003) and
constructive memory (Dewey 1896; Gero 1999), this paper presents an agent
based system for design optimization. Using this approach, an agent is able
to capture, learn from and re-use interactive experiences with its external
environment – the design problem and the designer. We focus on three
general classes of problems in optimization: modeling, reformulation and
algorithm selection. These represent a class of tasks in design traditionally
solved by humans, based on experiential knowledge rather than formally
encoded declarative knowledge. These have also been the hardest to
automate (Papalambros and Wilde, 2000). The result is a general
methodology for automated design tools that combines the interactive
behavior inherent to conceptual designing with the formal rigor of
optimization, along with the learning and reuse of design knowledge
captured through design experiences.

2. Situated cognition based designing

The traditional objectivist view of knowledge holds it to be fixed and well
defined, independent from the context of its application. It is encoded in
formal, descriptive forms (Clancey, 1997) stripped of locus and application,
i.e. how, when and in what situations it is used. The empirical evidence in
design (Schon and Wiggins, 1992; Gero 1999; Gero 2003) shows that
knowledge is not stored descriptions and sets of static rules, but an active
construction process in dialogue with the environment, continuously
changing and rearranging itself through experience (Clancey, 1999).
 Situatedness is the nature of interaction between an embodied design
agent in an external environment and the developing design, as a dialogue in
which “first-person” intensional interpretations on percepts, arising from a
constructive memory, produce actions which affect both the environment
and the design agent. Interactions develop on the basis of how experience
changes internal knowledge. This makes the path to a solution as interesting
as the solution. The sources of learning are the interactive, dynamic
processes of modeling, reformulation and search. Automated tools fail to
support this interactive behavior.
 Based on grounding and modifying past interactions, recalling a memory
is a constructive, situated act, which happens in response to the current
situation as well as all past experiences of a similar situation. The current
experience, in turn, changes memories for the future. Clancey (1997)
paraphrasing Dewey (1896) summarizes the nature of a constructive
memory: “Sequences of acts are composed such that subsequent experience
categorize and give meaning to what was experienced before”. Automated
tools also fail to learn constructively.

 DESIGN OPTIMIZATION: A SITUATED AGENT APPROACH 3

3. System architecture

This section presents the architecture for a computational design support tool
based on a situated agent based. We develop the following computational
requirements for a situated agent:
1. The interaction of the agent with the problem representation and the

human user is the basis for learning.
2. Memory is the basis for all interactions. Experiences in memory represent

tacitly gained strategic knowledge over and through the use of pre-coded
task knowledge in an agent.

3. Memory of past experiences informs current agent actions by modeling
expectations explicitly.

4. Based on its current model of expectations, the agent re-constructs and
modifies memories of past experience. Recalled experiences are not
copies of original experiences.

5. Current experiences cause the modification and reinterpretation of
memories of past experience.

3.1. ABSTRACT AGENT ARCHITECTURE

The agent is embodied in an external environment, which it can sense and
effect changes on. The external environment contains the external
representation of the design, e.g. sketches, drawings, natural language
descriptions, mathematical/ symbolic models, etc. The agent constructs and
maintains an internal representation of the external world in the form of a
design prototype, encapsulating the agent’s current knowledge and
expectations about the design that it uses to interact with the external
representation.
 The agent observes the effects of its own actions on the current external
representation, and based on its current beliefs and goals, it generates an
action to affect the external representation. An interaction is defined as a
single cycle of sensing and acting on the external representation. A group of
interactions define one design experience, starting with problem modeling
and exploration, and ending with a final design solution. Figure 1 shows the
abstract agent architecture, one interaction and the detailed process summary
of optimization tasks. The design prototype constructed by the agent in
response to the external representation is modeled by the computational
constructs of situation, push and pull (Gero and Fujii, 2000).

3.1.1. Situations, push and pull
A situation is a construction inside the agent resulting from the agent’s past
perceptions, interpretations and beliefs about the world. It guides and
influences what expectations and beliefs it activates, concepts the agent uses,
and actions it chooses for the current experience.
 Push () is a data driven, bottom up process, similar to forward reasoning
(Figure 1), which takes in data from one state and computes a transformation
which outputs the next state. Pull () is an expectation based, situation
specific, top down process, similar to hypothesis-driven reasoning and
results in information seeking, constructive behavior (Figure 1). In pull,
expectations are triggered based on the current situation and past
experiences, which affects what data the agent actively looks for in the

4 S. SARKAR, J.S. GERO AND R. SAUNDERS

previous state to compute the transformation to the next state. Push and pull
occur as parallel processes between all states, i.e. sense data – percepts,
percepts – concepts, and concepts – expectations.

Figure 1. Abstract agent architecture, interaction with the problem representation, detailed
process summary of optimization tasks carried out by agent

3.2.2. Agent working memory
The working memory is represented as a dynamic graph of interactions. One
interaction is a discrete time step. The two processes push and pull act in
parallel guiding plan generation and action selection. Each node in the graph
represents the design prototype at that time step. Each link in the graph is a
transformation or agent action on a design prototype. A full graph represents
one design experience, where a design prototype at each time step represents
the current state of the design. Working memory is concerned with
constructively recalling long term memory for a current design experience.

3.3.3. Agent long term memory
The long term memory is a dynamic graph of experiences. Long term
memory represents mappings between design situations, expectations and
strategies derived from a number of specific experiences over time. It is the
basis for what design situations and past experiences get triggered for each
future experience in the working memory. Time is measured in discrete steps
in terms of number of experiences. Long term memory is constructive as
previous memories are modified in the light of new experiences.

3.2. DESIGN MODELING, REFORMULATION, ALGORITHM SELECTION

A design experience has three parts, modeling, reformulation and algorithm
selection, each part comprising a set of interactions between the agent and

 DESIGN OPTIMIZATION: A SITUATED AGENT APPROACH 5

the design representation. Consider a space layout planning problem as an
example, which deals with locating a given number of activities in a given
number of locations with the aim of minimizing the costs of allocation
(Liggett, 1985). Modeling is a set of interactions dealing with choosing of
numbers of activities, defining locations, interaction costs between activities
and locations, seeding of a good starting solution, etc. Reformulation is a set
of interactions that deal with exploring changes in the model – introduction
of new activities or spaces, deletion of old ones, etc. Algorithm selection
deals with choosing a particular algorithm and applying it to the model–
constructive improvement algorithm, heuristic search, genetic algorithms,
etc. If the result satisfies the user, the design experience terminates. If not,
this acts as a cue for the agent to change its strategies. The user can act in
any of the three stages interactively with the problem representation, and all
three stages may be explored in any order of implementation.
 The goal for the agent is to develop, by being exposed to many space
layout planning experiences, strategies for three tasks that may be applied to
future problems. A user specifies a space layout planning problem as the
external representation. We present agent activities as examples for the three
stages:
- Stage 1: Modeling - The agent interprets the external representation and

produces an internal design prototype. Push-pull (Figure 1) cause the
sense data to trigger a design situation in the long term memory as a
mapping between the function (space layout) and expected behavior
(minimization of costs). This triggers past experiences producing
expectations in the agent for possible structure – behavior mappings
(Figure 1). Structure variables are the number of activities and locations,
fixed and interaction cost matrices. The behavior is a measure of the total
cost of allocating activities to locations. The agent activates concepts for
structure variables and corresponding behavior, pulling in the relevant
data from the user specified representation to seed a starting solution. The
agent finds a good starting solution by pulling and grouping together
activities and locations using any previous useful strategies: iterative
improvement, constructive initial placement (Liggett, 1985), or using
good activity groups identified in previous experiences (Gero and
Kazakov, 1997).

- Stage 2: Reformulation – The user reformulates the model by introducing
new activities, redefining location zones, changing the cost matrices. The
agent interacts with the problem representation, and changes the internal
design prototype in response to user changes. This continues till the user
– agent – problem interactions produce a final model.

- Stage 3: Algorithm selection – Depending on the problem size and
complexity, the agent chooses an algorithm and applies it to the model.
Examples of strategies which it develops in this case are mappings
between problem size and algorithm – a small space layout problem is
easily solved with iterative improvement or constraint propagation, but a
large complex problem needs a stochastic algorithm like genetic
algorithms etc.

 At the knowledge lean stage, when the agent has no strategic knowledge
but only task knowledge, it starts applying strategies and algorithms
randomly, or by observing user choices, based on simple forward reasoning.
The experience which leads to a good result is taken as a “good” example,

6 S. SARKAR, J.S. GERO AND R. SAUNDERS

and becomes part of long term memory. Now the next time, if a similar
problem is presented, the agent perceives a similar situation, and ends up
applying the same strategy. But if this time, the problem characteristics are
different (say multi-objective instead of single objective) then the
expectation based action does not lead to good results. This acts as a cue for
the agent to try some other approach. A successful approach again becomes
part of the long term memory. The prototype – action experience graphs are
dynamic constructs which evolve with experiences, and are the basis for
situation perception and expectation computation for the agent for all
experiences. It is expected that over time the strategies which it develops
will equilibrate for similar classes of problems. Grounding of these strategies
with experience will lead to a reduction in time to solving design problems.

Acknowledgements

This work is supported by the KSG Scholarship for Situated Design Optimization
and by a Faculty of Architecture International Research Scholarship.

References

Baya, V. and Leifer, L.: 1995, Understanding design information handling behavior using
time and information measure, in A.C. Ward (ed). Proceedings of the 1995 Design
Engineering Technical Conferences, ASME DE-83, Vol.2, Pp. 555-562.

Clancey, W.: 1997: Siutated Cognition – On Human Knowledge and Computer
Representations, Cambridge University Press.

Dewey, J.: 1896/1981, The reflex arc concept in psychology, Psychological Review 3, 357-
370 (reprinted in 1981).

Gero, J.S.: 1985, Design Optimization, Academic Press, London.
Gero, J.S.: 1990, Design Prototypes: A knowledge representation schema for design, AI

Magazine, 11(4), 26-36.
Gero, J.S.: 2003, Situated computing: A new paradigm for design computing, in A.

Choutgrajank, E. Charoenslip, K Keatruangkamala and W Nakapan (eds), CAADRIA03,
Rangsit University, Bangkok, Pp 579-587.

Gero, J.S. and Fujii, H.: 2000, A computational framework for concept formation in a situated
design agent, Knowledge-Based Systems, 13(6), 361-368.

Gero, J.S. and Kazakov, V.:1997, Learning and re-using information in space layout problems
using genetic engineering, Artificial Intelligence in Engineering, 11(3), 329-335.

Jo, J.H. and Gero J.S.: 1995, Space layout planning using an evolutionary approach,
Architectural Science Review, 36(1), 37-46.

Liggett, R.S.: 1985, Optimal spatial arrangement as a quadratic assignment problem, in J.S.
Gero (ed), Design Optimization, Academic Press, New York. Pp. 1-40.

Michalek, J.J. and Papalamros, P.Y.: 2002, Interactive design optimization of architectural
layouts, Engineering Optimization, 34(5), 485-501.

Papalambros P and Wilde DJ: 2000, Principles of Optimal Design: Modeling and
Computation, Cambridge University Press.

Parmee I (ed):1998, Adaptive Computing and Design and Manufacture, Springer.
Radford, AD and Gero, JS: 1988, Design by Optimization in Architecture and Building, Van

Nostrand Reinhold, New York.
Schon, D.A. and Wiggins, D.: 1992, Kinds of seeing and their functions in designing, Design

Studies, 13(2), 135-156.
Suwa, M., Gero, J.S. and Purcell, T.: 1998, Analysis of cognitive processes of a designer as

the foundation for support tools, Artificial Intelligence in Design ’98, Kluwer, Dordrecht.
Wilde, D.J.: 1979, Globally Optimal Design, John Wiley, New York.

