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Abstract. This paper presents a situated agent for design optimization. 
A situated agent captures, learns from and re-uses the interactions 
which it has with its external environment, forming the basis for 
experience based knowledge building in an agent. An agent is 
developed for design modeling, reformulation and algorithm selection 
– a class of tasks in design optimization traditionally performed by 
humans based on their experience, and hard to automate.  

1. Motivation 

Optimization has long been a predominant approach supporting automated 
design in architecture and engineering. Space layout problems, for example, 
have been automated using a number of approaches (Liggett, 1985; Gero, 
1985; Jo and Gero, 1995; Gero and Kazakov, 1997; Michalek and 
Papalamros, 2002). Optimization models designing as search. It finds the 
“best” design for some expected performance from a well structured, fixed 
solution space (Wilde, 1979; Radford and Gero, 1988; Parmee, 1998; 
Papalambros and Wilde, 2000). For most automated algorithms, the structure 
of the model remains unchanged throughout search, as does the behavior of 
the search process. Activities like design modeling, reformulation and 
algorithm selection remain primarily human endeavors. 

In architectural design, subjective and qualitative criteria are difficult to 
model mathematically (Michalek and Papalamros 2001). Nonetheless, they 
are very important for overall design performance. Further, it has been 
shown (Baya and Leifer, 1995) that designers spend a significant amount of 
time assessing design information on a non-quantitative level of abstraction. 
In general, tools fail to support or assist the designer during conceptual 
design which is when modeling and reformulation are the most pronounced 
activities. Designers can often produce better designs using heuristics learnt 
through personal experience. They transfer design knowledge from past 
experiences into future ones, and treat modeling, reformulation and search as 
mutually interacting concurrent activities. Suwa et al. (1998) observed from 
studies conducted on designers that they use sketches not just as external 
representations, but also as a mode of interaction with the developing design 
leading to unexpected discoveries and inventions of new design issues. This 
dynamic, interaction based experiential learning enables a different way of 
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designing, what Schon and Wiggins (1992) refer to as the “interaction of 
making and seeing”. This is in contrast to the behavior of static, non-
interactive optimization tools.  
 Our aim is to develop a computational tool that does not remain static and 
unchanged by the patterns of its use (Gero, 2003), but learns, builds and 
modifies design knowledge that arises through the experience of solving 
design problems. Drawing from cognitive science based approaches of 
situated learning and action (Clancey, 1997), situatedness (Gero 2003) and 
constructive memory (Dewey 1896; Gero 1999), this paper presents an agent 
based system for design optimization. Using this approach, an agent is able 
to capture, learn from and re-use interactive experiences with its external 
environment – the design problem and the designer. We focus on three 
general classes of problems in optimization: modeling, reformulation and 
algorithm selection. These represent a class of tasks in design traditionally 
solved by humans, based on experiential knowledge rather than formally 
encoded declarative knowledge. These have also been the hardest to 
automate (Papalambros and Wilde, 2000). The result is a general 
methodology for automated design tools that combines the interactive 
behavior inherent to conceptual designing with the formal rigor of 
optimization, along with the learning and reuse of design knowledge 
captured through design experiences. 

2. Situated cognition based designing 

The traditional objectivist view of knowledge holds it to be fixed and well 
defined, independent from the context of its application. It is encoded in 
formal, descriptive forms (Clancey, 1997) stripped of locus and application, 
i.e. how, when and in what situations it is used. The empirical evidence in 
design (Schon and Wiggins, 1992; Gero 1999; Gero 2003) shows that 
knowledge is not stored descriptions and sets of static rules, but an active 
construction process in dialogue with the environment, continuously 
changing and rearranging itself through experience (Clancey, 1999).  
 Situatedness is the nature of interaction between an embodied design 
agent in an external environment and the developing design, as a dialogue in 
which “first-person” intensional interpretations on percepts, arising from a 
constructive memory, produce actions which affect both the environment 
and the design agent. Interactions develop on the basis of how experience 
changes internal knowledge. This makes the path to a solution as interesting 
as the solution. The sources of learning are the interactive, dynamic 
processes of modeling, reformulation and search. Automated tools fail to 
support this interactive behavior.  
 Based on grounding and modifying past interactions, recalling a memory 
is a constructive, situated act, which happens in response to the current 
situation as well as all past experiences of a similar situation. The current 
experience, in turn, changes memories for the future. Clancey (1997) 
paraphrasing Dewey (1896) summarizes the nature of a constructive 
memory: “Sequences of acts are composed such that subsequent experience 
categorize and give meaning to what was experienced before”. Automated 
tools also fail to learn constructively. 
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3.  System architecture 

This section presents the architecture for a computational design support tool 
based on a situated agent based. We develop the following computational 
requirements for a situated agent: 
1. The interaction of the agent with the problem representation and the 

human user is the basis for learning. 
2. Memory is the basis for all interactions. Experiences in memory represent 

tacitly gained strategic knowledge over and through the use of pre-coded 
task knowledge in an agent. 

3. Memory of past experiences informs current agent actions by modeling 
expectations explicitly.  

4. Based on its current model of expectations, the agent re-constructs and 
modifies memories of past experience. Recalled experiences are not 
copies of original experiences. 

5. Current experiences cause the modification and reinterpretation of 
memories of past experience. 

3.1. ABSTRACT AGENT ARCHITECTURE 

The agent is embodied in an external environment, which it can sense and 
effect changes on. The external environment contains the external 
representation of the design, e.g. sketches, drawings, natural language 
descriptions, mathematical/ symbolic models, etc. The agent constructs and 
maintains an internal representation of the external world in the form of a 
design prototype, encapsulating the agent’s current knowledge and 
expectations about the design that it uses to interact with the external 
representation.  
 The agent observes the effects of its own actions on the current external 
representation, and based on its current beliefs and goals, it generates an 
action to affect the external representation. An interaction is defined as a 
single cycle of sensing and acting on the external representation. A group of 
interactions define one design experience, starting with problem modeling 
and exploration, and ending with a final design solution. Figure 1 shows the 
abstract agent architecture, one interaction and the detailed process summary 
of optimization tasks. The design prototype constructed by the agent in 
response to the external representation is modeled by the computational 
constructs of situation, push and pull (Gero and Fujii, 2000). 

3.1.1. Situations, push and pull 
A situation is a construction inside the agent resulting from the agent’s past 
perceptions, interpretations and beliefs about the world. It guides and 
influences what expectations and beliefs it activates, concepts the agent uses, 
and actions it chooses for the current experience. 
 Push ( ) is a data driven, bottom up process, similar to forward reasoning 
(Figure 1), which takes in data from one state and computes a transformation 
which outputs the next state. Pull ( ) is an expectation based, situation 
specific, top down process, similar to hypothesis-driven reasoning and 
results in information seeking, constructive behavior (Figure 1). In pull, 
expectations are triggered based on the current situation and past 
experiences, which affects what data the agent actively looks for in the 
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previous state to compute the transformation to the next state. Push and pull 
occur as parallel processes between all states, i.e. sense data – percepts, 
percepts – concepts, and concepts – expectations.  

 

Figure 1.  Abstract agent architecture, interaction with the problem representation, detailed 
process summary of optimization tasks carried out by agent 

3.2.2. Agent working memory 
The working memory is represented as a dynamic graph of interactions. One 
interaction is a discrete time step. The two processes push and pull act in 
parallel guiding plan generation and action selection. Each node in the graph 
represents the design prototype at that time step. Each link in the graph is a 
transformation or agent action on a design prototype. A full graph represents 
one design experience, where a design prototype at each time step represents 
the current state of the design. Working memory is concerned with 
constructively recalling long term memory for a current design experience. 

3.3.3. Agent long term memory 
The long term memory is a dynamic graph of experiences. Long term 
memory represents mappings between design situations, expectations and 
strategies derived from a number of specific experiences over time. It is the 
basis for what design situations and past experiences get triggered for each 
future experience in the working memory. Time is measured in discrete steps 
in terms of number of experiences. Long term memory is constructive as 
previous memories are modified in the light of new experiences. 

3.2. DESIGN MODELING, REFORMULATION, ALGORITHM SELECTION 

A design experience has three parts, modeling, reformulation and algorithm 
selection, each part comprising a set of interactions between the agent and 
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the design representation. Consider a space layout planning problem as an 
example, which deals with locating a given number of activities in a given 
number of locations with the aim of minimizing the costs of allocation 
(Liggett, 1985). Modeling is a set of interactions dealing with choosing of 
numbers of activities, defining locations, interaction costs between activities 
and locations, seeding of a good starting solution, etc. Reformulation is a set 
of interactions that deal with exploring changes in the model – introduction 
of new activities or spaces, deletion of old ones, etc. Algorithm selection 
deals with choosing a particular algorithm and applying it to the model– 
constructive improvement algorithm, heuristic search, genetic algorithms, 
etc. If the result satisfies the user, the design experience terminates. If not, 
this acts as a cue for the agent to change its strategies. The user can act in 
any of the three stages interactively with the problem representation, and all 
three stages may be explored in any order of implementation.  
 The goal for the agent is to develop, by being exposed to many space 
layout planning experiences, strategies for three tasks that may be applied to 
future problems. A user specifies a space layout planning problem as the 
external representation. We present agent activities as examples for the three 
stages:  
- Stage 1: Modeling - The agent interprets the external representation and 

produces an internal design prototype. Push-pull (Figure 1) cause the 
sense data to trigger a design situation in the long term memory as a 
mapping between the function (space layout) and expected behavior 
(minimization of costs). This triggers past experiences producing 
expectations in the agent for possible structure – behavior mappings 
(Figure 1). Structure variables are the number of activities and locations, 
fixed and interaction cost matrices. The behavior is a measure of the total 
cost of allocating activities to locations. The agent activates concepts for 
structure variables and corresponding behavior, pulling in the relevant 
data from the user specified representation to seed a starting solution. The 
agent finds a good starting solution by pulling and grouping together 
activities and locations using any previous useful strategies: iterative 
improvement, constructive initial placement (Liggett, 1985), or using 
good activity groups identified in previous experiences (Gero and 
Kazakov, 1997). 

- Stage 2: Reformulation – The user reformulates the model by introducing 
new activities, redefining location zones, changing the cost matrices. The 
agent interacts with the problem representation, and changes the internal 
design prototype in response to user changes. This continues till the user 
– agent – problem interactions produce a final model.  

- Stage 3: Algorithm selection – Depending on the problem size and 
complexity, the agent chooses an algorithm and applies it to the model. 
Examples of strategies which it develops in this case are mappings 
between problem size and algorithm – a small space layout problem is 
easily solved with iterative improvement or constraint propagation, but a 
large complex problem needs a stochastic algorithm like genetic 
algorithms etc.  

 At the knowledge lean stage, when the agent has no strategic knowledge 
but only task knowledge, it starts applying strategies and algorithms 
randomly, or by observing user choices, based on simple forward reasoning. 
The experience which leads to a good result is taken as a “good” example, 
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and becomes part of long term memory. Now the next time, if a similar 
problem is presented, the agent perceives a similar situation, and ends up 
applying the same strategy. But if this time, the problem characteristics are 
different (say multi-objective instead of single objective) then the 
expectation based action does not lead to good results. This acts as a cue for 
the agent to try some other approach. A successful approach again becomes 
part of the long term memory. The prototype – action experience graphs are 
dynamic constructs which evolve with experiences, and are the basis for 
situation perception and expectation computation for the agent for all 
experiences. It is expected that over time the strategies which it develops 
will equilibrate for similar classes of problems. Grounding of these strategies 
with experience will lead to a reduction in time to solving design problems.  
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