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ABSTRACT
A visualisation method is presented for interactive evolution
of interactive software objects, in which multiple outputs of
the system are used to construct a two-dimensional shape
in a feature space. The method allows multiple phenotypes
to be overlaid allowing for quick feedback on the different
properties of phenotypes. The properties of the resulting
visualisations are discussed.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and in-
terfaces—creative interactive evolution
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interactive genetic algorithm, creative evolution, visualisa-
tion

1. INTRODUCTION
As well as static outputs such as images or melodies, in-

teractive aesthetic evolution has been applied to behavioural
objects, such as an agent that forms part of an interactive
music system or artificial painting system, for example. In
these cases, we cannot simply look or listen to evaluate the
system, but need to interactively explore the output of the
system as it responds to different input conditions. In this
paper we propose a method for visualising the response of
systems to different inputs, in a way that is amenable to in-
teractive evolution and that, we argue, may provide an effec-
tive method for interactively evolving complex behavioural
objects. This method contributes to a wider goal of seek-
ing to contextualise interactive evolution into creative work-
flows, which is identified here as a design problem involv-
ing constraints defined both by evolutionary computing and
creative computing practice, where appropriate visualisation
techniques may be important.

We illustrate the visualisation method using a simple ex-
ample. The objects being evolved are Continuous-Time Re-
current Neural Networks (CTRNNs). These networks have
been used in a number of evolutionary robotics experiments
(e.g., [1]) and have been applied by the first author to in-
teractive music performance systems [2]. CTRNNs are eas-
ily encoded as genotypes that present a smooth open-ended
evolutionary space with an extremely rich set of possible
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behaviours. At the same time, as connectionist, nonlinear,
feedback systems their behaviour is hard to understand by
looking at the structure of the systems, let alone design by
means other than trial-and-error-based approaches such as
evolution.

1.1 Studies
CTRNNs were created with a structure consisting of 1

input node, 5 hidden nodes (fully connected with self-con-
nections) and 1 output node. Output values are in the range
[-1,1]. Input values can be any real number but are expected
to be in the same range. A CTRNN’s interaction with the
world therefore consists of a sequence of updates, in which
a new real-valued number is fed in from the environment,
and a new real-valued output is produced by the CTRNN.
CTRNNs have internal state that affects their output, so
simulation runs in which the CTRNN is reset at the begin-
ning of the run may have different outputs from simulation
runs in which it it not reset1.

Each CTRNN was run in simulation for 10,000 time steps
with 8 different input patterns. The suite of input patterns
was fixed throughout the entire process and consisted of:
all 0s; all 1s; a ramp from -1 to 1; a ramp from 1 to -1; a
sine wave repeating 40 times over the duration of the run;
a sine wave repeating 100 times over the duration of the
run; a random walk (#1); a random walk (#2). CTRNN
outputs for each of the 8 input patterns were recorded. The
CTRNNs’ internal states were reset at the beginning of each
run. Two features were then extracted from each output
sequence: (1) a simple correlation measure indicating the
similarity between the beginning and end of the pattern2;
(2) the number of zero crossings.

From these features, 8 2D points are derived for each
CTRNN, described here as a phenotypic behavioural rep-
resentation. The set of points is then represented as shown
in Figure 1 (top and middle) 3. Rather than simply scatter-
plot the points in the 2D feature space, we want to be able
to overlay multiple phenotypes in such a way that a user can
distinguish between phenotype representations when super-
imposed on the same image. We therefore attempt to derive

1All code (pure Java/Swing) for the ex-
periment can be downloaded from ol-
liebown.com/files/software/MixedMethodCTRNN.zip.
2For a total run duration of N time steps, using a window
size of N/10, the resulting feature was the lowest value of
the RMS distance di, between the window starting at N/4
and each window starting at N/2 + i for i ∈ {0, 1, 2 . . . (N −
N/10)}.
3Images are best viewed digitally and in colour.



Figure 1: (Top) two different randomly generated
phenotypes. (Middle) A series of siblings. (Bottom)
Three phenotypes represented in the ‘phase’ space.

a shape from each set of points. We do this first by deriving
the convex hull of the point set and drawing that as a trans-
parent fill. The hull may conceal any number of points, so
we also find the centroid of the points and draw lines to all
points from the centroid. This reveals the original points in
such a way that they can be visually related.

The benefit of this form of representation is that it illus-
trates both specific features of the system’s output and its
range of behaviours. For many CTRNNs, the output pat-
tern of the network from its initial reset will be entirely or
almost entirely unaffected by the input signal. This may be
true even if the output is itself a rich temporal pattern. In
that case all points will be in the same place. The appear-
ance of area indicates a network that is responsive to inputs.
We can see in which dimensions that variance occurs. Fur-
thermore, the more lines that we can see emanating from

the centroid, the more the network is responsive to different
forms of input.

Figure 1 (top) shows a comparison of two randomly gen-
erated CTRNNs whose convex hull representations overlap
slightly and are of a similar scale. More often than not the
representations of randomly generated CTRNNs are of rad-
ically different scales and drawn out along different axes,
providing a clear indication of phenotypic difference in mul-
tiple respects.

Figure 1 (middle) shows several mutations of the same
parent CTRNN overlaid. This shows how the representa-
tion can act both as a typical scatter-plot in 2D and as an
abstract representation of system behaviour. From this rep-
resentation we can see not only the relative properties of dif-
ferent agents but also get an intuitive sense of how random
mutation in the genotype space translates to distribution in
this phenotypic representation space.

In an additional example, each run was repeated twice
without resetting the CTRNN in between, resulting in 8
pairs of output sequences (Figure 1, bottom). The second
pattern in each set can be used to indicate the extent to
which the network is influenced by its own internal state.
If the first and second patterns are very different, this is an
indication of internal rather than external causation. Repre-
sentations were produced in the same way as above, but the
zero-crossing feature was replaced with the correlation fea-
ture applied to the second series in each pair of outputs. In
cases where the resulting shape forms a straight line emanat-
ing from the origin (no area), we can infer that the network
is externally responsive but not internally causal. Where
the resulting representation has area we can infer internal
causality.

2. CONCLUSION
The visualisation provides a simple and potentially infor-

mative way for interactive evolution to be applied to objects
that respond with complex behaviour to a variety of inputs.
In future work we intend to conduct user-studies to inves-
tigate the usability of such methods. Further examples can
be found by following the link from this paper in the publi-
cations section at olliebown.com.
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