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Abstract This chapter provides an introduction to the computational modelling of
social creativity using multi-agent systems. It reviews motivations for computation-
ally modelling socio-cultural aspects of creativity and describes a systems view of
creativity that has influenced approaches to computationally modelling social cre-
ativity. A minimal model of an ‘artificial creative system’ is described and the com-
ponents of an individual agent are given in some detail. The Digital Clockwork
Muse is presented as an implementation of an artificial creative system together
with some results from some small scale investigations into the self-organisation of
creative fields. Extensions of the computational model are described, including the
evolution of domain specific languages, more sophisticated individuals and alterna-
tive models of inter-agent interactions.
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1 Introduction

Popular definitions of creativity maintain a distinction between personal and social
creativity; Boden (1990) defines both psychological creativity (p-creativity) and his-
torical creativity (h-creativity), while Gardner (1993) distinguishes between little-c
(mundane) and big-C (eminent) creativity. These definitions maintain that creativity
has two important but distinct meanings: a person’s perception of their own work;
and, an honorific title awarded by society. Models of creativity that attempt to rec-
oncile these different meanings are complicated by the fact that an individual’s cre-
ativity is productively connected with culture and learning (Lindqvist, 2003).
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Computational creativity has attempted to address questions around the social
nature of creativity in one of two ways, either; (1) producing highly sophisticated
models of individual creativity that can interact with society at large, or (2) devel-
oping computational models of artificial societies that exhibit recognisable features
of social creativity. The first approach requires the development of highly capable
computational systems that are not only able to produce creative works, judged by
the standards of human experts, but are also capable social actors, e.g., by conjuring
a persona for the computational system such that it may achieve some recognition
of autonomy (Colton, 2012; Cope, 2005; Hoffman & Weinberg, 2011; McCorduck,
1991; Wiggins, 2008). The second approach requires the development of computa-
tional models of salient social and cultural aspects of creativity, e.g., by developing
multi-agent based models of creative individuals (Bown & Wiggins, 2005; Gabora,
1995; Macedo & Cardoso, 2001; Saunders & Gero, 2001; Saunders & Grace, 2008;
Sosa & Gero, 2005). This chapter explores the second approach.

Computational models of social creativity can be applied in different ways: as
a way to understand creativity as a complex social phenomenon, similar to com-
putational social science (Saunders & Bown, 2015); as a practical approach to de-
veloping distributed computational creativity systems, similar to other applications
of multi-agent systems for distributed computing (Wooldridge, 2001); or, as a way
to support human creativity as a social activity (Saunders, Chee, & Gemeinboeck,
2013). This chapter focuses on the first of these applications, although the approach
and techniques can be applied to the development of distributed systems for practi-
cal applications.

Cellular automata and agent-based models are well established in the synthetic
study of social phenomena (Axelrod, 1997; Epstein & Axtell, 1996; Schelling, 1969;
Wooldridge, 2001). In computational creativity, the study of creativity through the
development of agent-based models has spanned multiple domains and different
aspects of creativity as a social phenomenon. For example, Gabora’s ‘Meme and
Variations’ (MAV) is one of the earliest multi-agent based models to examine the
interactions between individuals that drive social creativity and cultural evolution
through imitation and mutation of ideas (Gabora, 1995). Colton, Bundy, and Walsh
(2000) developed a computational model involving multiple agents working to-
gether to explore a mathematical domain. Macedo and Cardoso (2001) explored the
ability of agents to gain the attention of others through the production of ‘surprising’
artefacts. Sosa and Gero (2005) used multi-agent based models to examine the role
of society in design. Bown (2008) developed multi-agent based models to explore
cohesion, competition and maladaptation in the evolution of musical behaviour. In
these agent-based models, creativity can be subjective or objective, individual or
collective, direct or indirect (Sosa & Gero, 2008). This chapter presents a particular
multi-agent model based approach that combines computational models of personal
and social creativity to produce ‘artificial creative systems’.

The next section briefly describes a systems view of creativity that provides a
useful framework for developing computational models of social creativity. Sec-
tion 3 presents a multi-agent approach to computationally modelling based on the
systems view of creativity. Section 4 describes an implementation of an artificial
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Fig. 1: Csikszentmihalyi’s Systems View of Creativity. Based on an illustration from
(Saunders & Grace, 2008) adapted from (Csikszentmihalyi, 1988).

creative system, The Digital Clockwork Muse, and presents some results from ex-
periments with this implementation. Section 5 discusses possible extensions to the
model presented, including the evolution of domain specific languages, alternative
individuals agents, and interactions between agents.

2 A Systems View of Creativity

Vygotsky (1971) first proposed a systems theory of creativity emphasising a recip-
rocal relationship between individuals and their socio-cultural environment where
individuals are both influenced by their understanding of their socio-cultural en-
vironment and through their actions cause it to change. An individual may deter-
mine that their work is ‘creative’ independent of the judgement of others but their
determination is naturally informed by their experiences of their socio-cultural en-
vironment, e.g., the work of others (Martindale, Moore, & West, 1988; Tardif &
Sternberg, 1988). In addition, for a work to be given the honorific title of ‘creative’
other members of a society must agree based on their own experiences of the socio-
cultural environment. Consequently, regardless of whether creativity is personal or
social, it is the result of a dynamic system of interactions between multiple indi-
viduals and their socio-cultural environment (Engeström, 1996). Csikszentmihalyi
(1988) argued that creativity is the product of three shaping forces that result from
the cultural, social and personal context of the creative activity. The resulting model,
illustrated in Figure 1, defines creativity as the result of the interaction between three
subsystems: a domain, an individual, and a field. Each subsystem performs a spe-
cific function; the domain transmits information to the individual, the individual
produces a variation, and the field selects variations to pass on to the domain. These
subsystems are described in more detail below.
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Csikszentmihalyi (1999) argues that before an individual can produce a variation
there must already exist a culture, with traditions and conventions in place for the
individual to draw on. A domain is defined as the body of knowledge, the set of
rules and procedures, the symbolic system, which is used by an individual to pro-
duce variations. There will be a multitude of domains in a culture (Feldman, Csik-
szentmihalyi, & Gardner, 1994) and domains will evolve and change over time. An
individual must reference a domain to produce a contribution that a field will under-
stand. As Boden (1990) points out: ‘To be appreciated as creative, a work of art or a
scientific theory has to be understood in a specific relation to what preceded it’.

An individual is the producer of variation within the systems model. Csikszent-
mihalyi argues that a person’s background, personal traits and motivations, together
with their ability to internalise domain knowledge as well as the expectations of the
field, combine to enable an individual to be successfully creative within the system.
This view of an individual emphasises the need for them to learn and adapt in order
to gain a mastery of a domain and anticipate the response of a field to proposed vari-
ations. It also emphasises the importance of successful communication for a creative
individual.

A field is composed of all of the individuals in a society who possess domain
knowledge and have influence over its contents. Sawyer (2012) defines the field as
“a complex network of experts, with varying expertise, status, and power”. Possi-
ble members of a field include creators, educators, critics, agents (marketers) and
consumers. According to Csikszentmihalyi, if the members of a field judge a con-
tribution from an individual to be creative it will be added to the domain for other
individuals to reference, thus continuing the cycle.

Csikszentmihalyi argues that creativity can be found when and where these three
subsystems interact. In this view, an individual is necessary but not sufficient for a
creative system; all three subsystems and their interactions, are equally important.
For example, Csikszentmihalyi (1988) argues that highly structured domains, e.g.,
mathematics, promote creativity by assisting individuals to refer to relevant knowl-
edge and for fields to assess an individuals contribution. Similarly, social structures,
e.g., the emergence of ‘gate-keepers’ (Feldman et al., 1994; Sosa & Gero, 2004),
have significant impact on an individual’s ability to have variations accepted. To
emphasise the importance of all of three elements and their interactions the model
is often referred to as the Domain-Individual-Field-Interaction (DIFI) framework
(Feldman et al., 1994).

2.1 Computationally Modelling the Systems View of Creativity

Liu (2000) first proposed an approach to computationally modelling the DIFI frame-
work: The Dual Generate-and-Test model of creativity, illustrated in Figure 2, en-
capsulates two generate-and-test cycles: one at the level of the individual and the
other at the level of society. The domain is modelled as a repository of artefacts for
the individual to draw on and the field to contribute to. The individual generate-and-
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test cycle implements Newell et al’s generate-and-test model of creative thinking
(Newell, Shaw, & Simon, 1962) incorporating problem finding, artefact generation
and personal creativity (p-creativity) testing. The socio-cultural generate-and-test
cycle incorporates the individual as the generator and the field as a monolithic test
of the creativity of the variations generated, which determines whether they are
sufficiently creative to be added to the domain. The apparent simplicity of Liu’s
computational model masks the complexity of modelling the field as a monolithic
socio-cultural creativity test. Liu suggests that such a system would likely defer to
some form of oracle, most likely a human, to provide judgements of creativity. The
following section explores the use of multi-agent based models to develop ‘artificial
creative systems’ that support emergent notions of creativity from the interactions
of individuals, removing the need for such oracles.

Individual

yes
problem 
finding

artefact 
generation p-creativity 

test

fail

Domain

fail

Field
social

creativity
test

pass

pass

domain
knowledge

Fig. 2: The individual and socio-cultural generate-and-test loops in Liu’s dual-
generate-and-test model of creativity. Based on an illustration in (Saunders, 2002).

3 Artificial Creative Systems

The agent-based model presented here does not attempt to define a 1-to-1 mapping
with the subsystems of the DIFI framework. In an artificial creative system, no indi-
vidual agent contains a test for ‘big-C’ or ‘h-creativity’ but instead tests for ‘little-c’
or ‘p-creativity’, which may or may not be judged by the other agents within a
field to be “creative”. The ability of agents to make independent judgements of both
novelty and value is fundamental to the model, permitting the emergence of social
definitions of creativity as a collective function of many individual evaluations of
creativity. Consequently, the notion of a “creative work”, or a “creative individual”,



6 Rob Saunders

is honorific as it must be determined as the consequence of some form of negotiation
between at least two agents.

The autonomy of agents equipped with the ability to determine what is interest-
ing, and therefore potentially p-creative, is the key to adapting Liu’s dual generate-
and-test model to the study of emergent notions of creativity. This approach sub-
stitutes the monolithic socio-cultural creativity test with one based on a distributed
agreement that emerges from communication between individual agents. In such an
artificial creative system, the socio-cultural creativity test is modelled through the
communication of artefacts and evaluations of p-creativity between individuals. The
following describes how the subsystems of the DIFI framework can be modelled as
agents and interactions.

3.1 Domains

Creative domains, as described by Csikszentmihalyi (1988), are dynamically main-
tained and contain symbolic, e.g., rules, language etc., as well archive material, e.g.,
previous works. Consequently, domains should be considered as being distributed
across creative fields, existing within a variety of media, with each individual in a
field having a partial view of the whole. The simplest computational model of a do-
main is a repository of artefacts that have been judged to be creative, i.e., an archive.
This is the model described in Liu’s model above and used in the simple implemen-
tations below. But this model lacks both the distributed and multi-faceted nature of
the domain described by Csikszentmihalyi.

Other computational models of the domain are possible that better capture the
distributed nature of the domain, e.g., Gabora’s MAV where each agent maintains
some part of the whole domain in memory. These partial views may overlap, i.e.,
two agents may have artefacts in common. In these models it is only by considering
the intersection of these partial views, i.e., parts that are commonly held, that the
domain can be understood. Saunders (2011) proposed a way to extend the model
of the domain to encompass more than exemplars of previous work, by incorpo-
rating a model of the evolution of domain specific languages to capture symbolic
representations, e.g., descriptions of artefacts.

3.2 Fields

In an artificial creative system, a field is modelled as a set of agents that interact
with each other and the domain according to a communication policy, as illustrated
in Figure 3. In this example, agent i communicates an artefact that it considers to be
p-creative to agent j, which evaluates the artefact according to its own p-creativity
test and sends its evaluation back to i. Each agent’s evaluation of an artefact is
affected by the traits of the individual, e.g., preference for novelty, prototypes held
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Fig. 3: A minimal social creativity test in an artificial creative system. Based on an
illustration from (Saunders, 2002).

in memory. Consequently, through the communication of evaluations, j can affect
the generation of future artefacts by i by rewarding i when it generates artefacts that
j considers to be p-creative.

Indirectly, i can also affect the evaluation of p-creativity by j because j’s eval-
uation of p-creativity involves an evaluation of novelty, which is partly, or wholly,
based on artefacts it has previously experienced. Hence, i affects a change in j’s
evaluation of p-creativity every time it causes j to evaluate an artefact and update
the prototypes held in memory. By exposing j to artefacts that i considers to be
p-creative it can alter j’s evaluation of novelty and hence it’s p-creativity test.

To implement the socio-cultural creativity test as a collective function of p-
creativity tests a communication policy is required. A simple communication policy,
implemented in the system described in Section 4, is for agents to communicate an
artefact when their evaluation of that artefact’s p-creativity is greater than some fixed
threshold. In addition agents have a domain interaction policy, for example, agents
will add artefacts, generated by other agents, if the p-creativity evaluation of the
artefact is greater than a domain submission threshold. In this way no individual is
allowed to submit their own work to the domain, thus, at least one other agent must
find an individual’s work creative before it is entered into the domain.

3.3 Individuals

An individual in the DIFI framework must be able to transform knowledge from
the domain and produce some novelty for the field to determine whether or not it is
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creative. Consequently, there are three main requirements for an agent-based model
of an individual; (1) it must be able to access the contents of the domain, (2) it must
be able to generate some novelty, and (3) it must be able to communicate with other
members of the field.

Given a simple repository-style model of a domain, the ability to access the con-
tents of the domain, can be accomplished with a suitable interface for querying the
repository, e.g., a database. For more complex models of a domain, e.g., where the
some of the knowledge held in the domain may be distributed across a group of
agents, then an individual agent may need to communicate with other agents to gain
access to their knowledge, as in the case of Gabora’s MAV (Gabora, 1995).

Common to other multi-agent based models, individual agents must be able to
communicate with members of the field. Simple message passing protocols can be
used to accomplish this. As a minimum, individual agents can pass artefacts to other
members of the field and receive feedback in return. More complex models of com-
munication may include meta-information about artefacts, e.g., a description using
a domain-specific language (Saunders & Grace, 2008).

The ability of an individual to generate some novelty, or more precisely the abil-
ity to detect that some potentially interesting novelty has been generated, poses the
greatest challenge. While the mechanics of producing novelty can be implemented
in a variety of ways the ability to detect novelty and use this to implement a test for
‘p-creativity’ places specific requirements on the agent. The following describes the
components of an agent that uses a novelty detector and an ‘hedonic function’ to
achieve these requirements.

3.3.1 Novelty Detection

A novelty detector determines the novelty of a new input based on a model of ex-
pected inputs. Novelty detectors can be implemented in different ways depending
on the type of novelty to be detected (Markou & Singh, 2003a, 2003b). One way
to implement a novelty detector is to use a classifier that has been trained on a
set of expected stimuli, such that when a new stimulus is presented to the classi-
fier, the classification error is an indication of the novelty. In such an agent-based
model, an agent i has a memory Mi with K learned categories of artefacts, such that,
Mi = {m1

i , . . . ,m
K
i } where mk

i is the kth learned category. Given an artefact a, the
novelty detector calculates the novelty, Ni(a) to be:

Ni(a) = min
mk

i ∈Mi

∆(a,mk
i ) (1)

Where ∆(a,mk
i ) is the classification error, which measures the difference between

an input a and the kth learned category mk
i . How the classification error, ∆ , is cal-

culated will differ between implementations, e.g., it may be the Euclidean distance
from a prototype or a function of the error generated by a neural network.

Simply detecting novelty is sufficient for many applications, e.g., monitoring of
equipment to identify potential faults (Markou & Singh, 2003a), but in computa-
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Fig. 4: Example Hedonic functions (a) Wundt Curve, (b) linear and (c) piecewise
approx. of Wundt Curve. Illustration of Wundt Curve based on (Saunders, 2002)
after (Berlyne, 1960).

tional models of p-creativity more is required. An agent in an artificial creative
system needs to be able to identify potentially interesting novelty by modelling a
preference for novelty, which can be achieved with the use of an hedonic function.

3.3.2 Hedonic Functions

An hedonic function defines a transformation from a perceived stimulus to a re-
sponse signal, which can be used to guide learning and action, e.g., in intrinsically-
motivated reinforcement learning (Singh, Barto, & Chentanez, 2004). Studies of
human preference suggest an inverted U-shape relationship between stimuli and in-
terest (Heckhausen & Heckhausen, 2008; Wundt, 1910), known as the Wundt Curve,



10 Rob Saunders

illustrated in Figure 4(a). For an agent i the Wundt Curve may be implemented as
a function, Hi(x), which takes a stimulus, x, and calculates a response signal as
the difference of two cumulative Gaussian functions, a reward function Ri(x) and a
punishment function Pi(x), which according to Berlyne (1960) represent a positive
response to small amounts of stimuli and a negative response to large amounts of
stimuli:

Hi(x) = Ri(x)−αPi(x)

Ri(x) = F(x | µr,σr)

Pi(x) = F(x | µp,σp)

(2)

Where µr and σr are the mean and standard deviation that define the underlying
normal distribution for rewarding smaller amounts of stimulus and µp and σp define
the underlying normal distribution for punishing larger stimuli and α defines the
degree to which large values of the stimulus are punished, i.e., for values greater
than 1 a negative reward value will be generated for values of x when Pi(x)≥ Ri(x).
The cumulative Gaussian function F(x | µ,σ) is calculated by:

F(x | µ,σ) =
1
2

[
1+ erf

(
x−µ

σ
√

2

)]
(3)

Where erf(y) is the Gauss error function, which can be approximated for efficient
calculation. It is also useful to define η , as the value of x that generates the peak
response:

η = argmax
x

Hi(x) = {x | ∀x′ : Hi(x′)≤ Hi(x)} (4)

Berlyne (1960) identified the Wundt Curve as a model for typical reactions that
animals and humans display to the presence of novel situations. That is, the most in-
teresting experiences are those that are similar-yet-different to those that have been
experienced before, or might be expected given previous experiences. By defining
the stimulus, x = Ni(a), the Wundt Curve can be used to calculate a reward based on
novelty Where x is due to novelty, η represents the preferred novelty for an individ-
ual agent. By altering parameters controlling the reward and punishment functions
the value of η can be altered to control how novel an artefact must be for it to be
considered ‘interesting’.

Other hedonic functions are possible and may be desirable for certain domains.
For example, if the expected novelty of any artefact can be reasonably assumed
to lie within the range of values close to the origin, then a simple linear response
function may be sufficient, such as that illustrated in Figure 4(b). Alternatively, if
the interest values determined by an hedonic function are only used for comparison,
e.g. to compare the relative interest due to different artefacts, such that the absolute
value of the interest is not important, then a piecewise linear approximation of the
Wundt Curve, Figure 4(c), may be a approximation.
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3.3.3 Interest, Boredom and Curiosity

Given an hedonic function, an agent can determine a measure of interest and deter-
mine what action to take as a consequence. For example, given a communication
threshold, τC, an agent i may determine to send an artefact a to another agent if
Hi(Ni(a)) > τC. Alternatively, given a domain submission threshold, τD, an agent
may decide to submit an artefact a to the domain if Hi(Ni(a))> τD. The rules gov-
erning when these decisions may be acted upon form a policy for how the field is
structured. A measure of interest for each artefact allows an agent to monitor the
frequency with which it encounters ‘interesting’ artefacts. By keeping an accumu-
lated measure of interest over time, it is possible to develop a simple computational
model of ‘boredom’. Accumulating interest over time can be achieved simply, e.g.,
Si = αSi +(1−α)Hi(Ni(a)), where Si is the accumulated interest for agent i and
α is a suitable decay rate. A state of ‘boredom’ can then be modelled whenever
Si < τB, where τB is a suitable threshold for a desired minimum interest level that
the agent attempts to maintain.

Given a model of boredom, it is possible to model a type of curiosity identi-
fied by Berlyne (1960) as ‘diversive curiosity’. In diversive curiosity, a lack of novel
stimuli produces a change in behaviour to increase potential exposure to new experi-
ences. An agent in an artificial creative system may implement this type of curiosity
very simply by retrieving an artefact from the domain. Alternatively, an agent could
adjust the parameters of its generative system, such that a more diverse range of arte-
facts are produced. This simple model of curiosity is based on an assumption that
the memory of an agent contains an implicit model of the expectations of future ex-
periences. More sophisticated explicit models of curiosity have been developed and
models with explicit expectations have been developed to model surprise (Baranès
& Oudeyer, 2009; Merrick & Maher, 2006; Schmidhuber, 1991). Other types of
curiosity have also been identified, e.g., ‘specific curiosity’, may also be computa-
tionally modelled. In addition, other forms of intrinsic motivation, e.g., competence,
can be computationally modelled (Merrick & Maher, 2006).

This section has described how an multiple agents, interacting with other agents
and a repository, can be used to model a creative system. The next section provides
a concrete example of implementing this approach.

4 The Digital Clockwork Muse

The Digital Clockwork Muse is an implementation of an artificial creative system
inspired by the work of Martindale (Martindale, 1990). In “The Clockwork Muse”
Martindale presented an investigation into the role that individual novelty-seeking
behaviour plays in literature, music, visual arts and architecture. Martindale con-
cluded that the search for novelty exerts a significant force on the development of
styles. The Digital Clockwork Muse is an attempt to computationally model a cre-



12 Rob Saunders

ative system to investigate some of the features of creative societies, driven by the
search for novelty, described by Martindale.

Algorithm 1: The Digital Clockwork Muse
while t < total simulation time do

foreach agent i in field F do
update interest hi for artefact ai, hi = Hi(Ni(ai))
while message queue Qi is not empty do

remove artefact an from Qi, sent by agent n
calculate the hedonic value hn

i = Hi(Ni(an))
update memory Mi to include an

send feedback including hn
i to sender agent n

if hn
i > domain submission threshold (τD) then
submit artefact an to domain D

end
if hn

i > hi then
adopt received artefact, ai← an, hi← hn

i
end

end
generate new artefact a′i from ai
calculate the hedonic value h′i = Hi(Ni(a′i))
update memory Mi to include a′i
if h′i > communication threshold (τC) then

select an agent m from F, where m 6= i
send artefact a′i to agent m

end
if h′i > hi then

adopt generated artefact, ai← a′i, hi← h′i
end
update interest level Si = αSi +(1−α)hi
if Si < boredom threshold (τB) then

retrieve artefact ad from domain D
calculate the hedonic value hd

i = Hi(Ni(ad))

update memory Mi to include ad

if hd
i > hi then
adopt retrieved artefact ai← ad , hi← hd

i
end

end
end

end

The operation of The Digital Clockwork Muse is expressed in Algorithm 1, every
agent, i, in a field maintains a current artefact, ai, with an associated interest value,
hi. At every step in the simulation, each agent implements up to three phases in
order to process artefacts; (1) received from members of the field, (2) generated by
the individual, and (3) retrieved from the domain.

In the first phase, each agent, i, evaluates every artefact, an in its message queue,
shared by another agent n, to calculate an hedonic value hn

i . Agent i sends an evalu-
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ation of its interest in the artefact, hn
i , to the sending agent, n. If the agent calculates

that its interest in an artefact exceeds the domain submission threshold, τD, then the
agent adds the artefact to the domain, D. If the agent calculates that its interest in
an artefact from the queue exceeds its interest in its current artefact, hn

i > hi, it will
adopt the received artefact, ai← an.

In the second phase, each agent generates a new artefact, a′i, based on its current
one, ai, and evaluates its interest in the generated artefact, h′i. If the agent’s interest
in the generated artefact exceeds the communication threshold, τC, then the agent
will choose another agent, m, from the field and send the generated artefacts to it. If
the agent’s interest in the generated artefact is greater than its interest in the current
artefact, h′i > hi, it will adopt the generated artefact, ai← a′i.

In the third phase, an agent updates its internal state of accumulated interest, Si,
based on the hedonic value of the current artefact. If the level of accumulated interest
falls below the boredom threshold, τB, then the agent will retrieve an artefact, ad ,
from the domain D. If the agent’s interest in the retrieved artefact, hd

i , exceeds the
agent’s interest in the current artefact, then the agent will adopt the retrieved artefact.

4.1 Experiments

Martindale (1990) illustrated the influence of the search for novelty by individuals
in a thought experiment “The Law of Novelty”. The Law of Novelty forbids the
repetition of word or deed and punishes offenders by ostracising them. Martindale
argued that The Law of Novelty was merely a magnification of the reality in creative
fields. Some of the consequences of the search for novelty are that individuals that
do not innovate appropriately will be ignored in the long run and that the complexity
of any one style will increase over time to support the increasing need for novelty.

The following experiments were designed to study the effects of the search for
novelty in artificial creative societies modelled as agents that have hedonic func-
tions with different preferred novelty value, i.e., η , as defined in Equation 4. In this
implementation, η ranges from 0 to 32, equal to the range of the potential classifica-
tion error generated by the novelty detectors used. More detailed accounts of these
experiments can be found in (Saunders, 2002).

4.1.1 The Law of Novelty

In the first experiment a group of 12 agents were created. Ten of the agents, agents
0–9, shared the same hedonic function, i.e. the same preference for novelty (η = 11).
Agent 10 was given a preference for low amounts of novelty (η = 3) and agent 11
was given a preference for high amounts of novelty (η = 19). Figure 5(b) illustrates
the network of communication links developed between agents that communicate
artefacts and evaluations on a regular basis.
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Agent Preferred Attributed
ID Novelty(η) Creativity
0 11 5.43
1 11 4.49
2 11 4.50
3 11 3.60
4 11 4.48
5 11 1.82
6 11 6.32
7 11 8.93
8 11 10.72
9 11 5.39
10 3 0.00
11 19 0.00

(a) The attributed creativity between
agents.
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The model of curiosity used by the curious design agents in The 

Digital Clockwork Muse also incorporates a “hedonic function” 

that transforms novelty into a measure of interestingness. The 

hedonic functions used in The Digital Clockwork Muse are based 

on the Wundt Curve that Berlyne [1] used as a model for the 

typical reactions that animals and humans display in the presence 

of novel situations. The Wundt Curve is illustrated in Figure 3 as 

the combination of a reward and punishment functions. 

Using Wundt Curve hedonic functions the curious design agents 

in The Digital Clockwork Muse all favour artworks that are 

similar-yet-different to those that have been seen before, however, 

the agents differ in how similar a new artwork must be for it to be 

considered highly interesting and therefore potentially creative. 

The preferred novelty of each agent is expressed as a value N that 

indicates the amount of novelty associated with peak interest in 

the Wundt Curve. In The Digital Clockwork Muse, N ranges from 

0 to 32; this is equal to the range of the potential classification 

error generated by the novelty detectors used. 
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Figure 3. The Wundt Curve: the hedonic function used to 

calculate interestingness. 

The Law of Novelty 
We investigated the effects of the search for novelty, by producing 

agents with different hedonic functions. The aim was to show that 

agents are not recognised as creative when they fail to innovate 

inappropriately. Agents can innovate inappropriately either by 

producing “boring” images that are too similar to ones previously 

experienced by other agents, or by producing “radical” images 

that are too different for other agents to appreciate. 

We have simulated both types of inappropriate innovation in a 

single simulation. For this experiment we created a group of 

agents most of whom, agents 0-9, shared the same hedonic 

function, i.e. the same preference for average novelty (N=11). 

Two of the agents have quite different novelty preferences. One, 

agent 10, has a preference for low amounts of novelty (N=3) and 

the other, agent 11, has a preference for high amounts of novelty 

(N=19). Agents with a lower novelty preference tend to innovate 

at a slower rate than those with a higher hedonic preference. The 

results of the simulation are presented in Table 2. 

 

Table 2. The attributed creativity for a group of agents with 

different preferences for novelty. 

Agent 

ID 

Preferred 

Novelty 

Attributed 

Creativity 

0 N=11 5.43 

1 N=11 4.49 

2 N=11 4.50 

3 N=11 3.60 

4 N=11 4.48 

5 N=11 1.82 

6 N=11 6.32 

7 N=11 8.93 

8 N=11 10.72 

9 N=11 5.39 

10 N=3 0.0 

11 N=19 0.0 

 

Figure 4 shows how the network of communication links that has 

developed between agents that communicate artworks and 

evaluations on a regular basis excludes the two agents with 

different hedonic functions. In the screenshots of the running 

simulation the squares represent agents; the images in each square 

shows the currently selected genetic artwork for that agent, the 

number above each agent shows its attributed creativity, and the 

lines between agents indicate the number of rewarded 

communications between pairs of agents. 

 

 

 

Figure 4. Screenshot of a simulation demonstrating the 

emergence of the Law of Novelty. 

The results show the agents with the same preference for novelty 

to be somewhat creative according to their peers, with an average 

attributed creativity of 5.57. However, neither agent 10, with a 

preference for low amounts of novelty, nor agent 11, with a 

preference for high degrees of novelty, received any credit for 

their artworks. Consequently none of the artworks produced by 

these agents were saved in the domain for future generations. 

When these agents expired nothing remained in the system of 

their efforts. 

(b) Screenshot of the running simu-
lation.

Fig. 5: The Law of Novelty simulated within a single field of agents with different
preferences for novelty.

The results of the simulation are presented in Figure 5(a). The results indicate that
the agents with the same preference for novelty to be somewhat ‘creative’ according
to their peers, with an average attributed creativity of 5.57. Neither agent 10, with
a preference for low amounts of novelty, nor agent 11, with a preference for high
degrees of novelty, received any credit for their artefacts. Consequently none of the
artefacts produced by these agents were saved in the domain.

The results illustrate the potential for the simulation of the Law of Novelty in
artificial creative systems. Agents with a lower novelty preference tend to innovate
at a slower rate than those with a higher hedonic preference and while an agent must
produce novelty to be considered creative, it must do so at a pace that matches its
audience.

4.1.2 The Formation of Cliques

In the second experiment, the behaviour of groups of agents with different hedo-
nic functions is investigated. To do this a group of 10 agents was created, five of
them had a hedonic function that favoured novelty close to η = 6 and the other five
agents favoured novelty values close to η = 15. Figure 6(a) illustrates the network
of communication of high evaluations between the agents for interesting artefacts.

Two areas of frequent communication can be seen in the matrix of communica-
tion shown in Figure 6(a). The agents with the same hedonic function frequently
send high evaluations for interesting artefacts amongst themselves but rarely send
them to agents with a different hedonic function, i.e., there are a large number of
high evaluation messages between agents 0–4 and agents 5–9, but only one between
the two groups, agent 4 sends a high evaluation to agent 5.
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The results show that while an agent must innovate to be 

considered creative, it must do so at a pace that matches other 

agents to achieve recognition. The agent with a preference for 

high levels of novelty and hence rapid innovation was just as 

unsuccessful in gaining recognition as the agent with a low 

novelty threshold that innovated too slowly. 

To better understand the effects of an agent having a different 

hedonic function to the majority of agents in a population a series 

of similar simulation runs were performed where the difference 

between the majority preference for novelty and the two renegade 

agents is varied from 8, as in the current experiments giving N=3 

and N=19, and 1, by giving the two agents hedonic functions 

favouring N=10 and N=12. The attributed creativity to the agents 

favouring high and low levels of novelty are shown in Figure 5. 

The figures plotted against the hedonic are the creativity attributed 

to an agent relative to the average creativity of the majority of 

agents that share the same hedonic function. 
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Figure 5. Relative creativity for a range of conservative and 

radical agents over a range of hedonic values. 

 

Figure 5 shows that attributed creativity varies non-linearly with 

the difference between an agent’s preference for novelty and the 

majority. It also shows a slight preference for the works of the 

conservative agent over the radical one. 

The results of this experiment appear to confirm Martindale’s 

hypothesis generalises to the case where works that are very 

similar to ones previously experienced are ignored just as much as 

those that are exact replicas. To avoid being ignored an agent 

must produce some significant novelty that sets a work apart from 

previous examples. 

The results also indicate that while an agent must produce novelty 

to be considered creative, it must do so at a pace that matches its 

audience. There is no advantage in producing many highly novel 

works if the audience cannot appreciate them. In the first run of 

the experiment, the agent with a preference for high levels of 

novelty and hence rapid innovation was just as unsuccessful in 

gaining recognition as the agent with a low novelty threshold that 

did not innovate. Indeed, it appears from the series of experiments 

shown in Figure 5 that erring on the side of caution may be more 

beneficial that innovating too quickly but more work needs to be 

done to confirm this experimentally. 

The study of the individual in The Digital Clockwork Muse is 

similar in several ways to the studies of creative humans 

conducted by cognitive scientists, psychologist, and 

psychometricians. The design of the individuals follows the 

traditional approach taken in cognitive science and artificial 

intelligence of identifying potentially important cognitive 

functions, in this case novelty detection, interestingness 

judgement and curiosity, and then implementing these within a 

computational model. 

The validity of a computational model of cognitive processes is 

often tested by comparing the behaviour of the model against 

observations of human subjects. In this case, the validity of the 

model was tested by comparing the behaviour of a curious design 

agent against observations about individuals engaged in creative 

fields, i.e. Martindale’s observations of the importance of the 

search for novelty. 

Continuing the investigation into the relationship between 

attributed creativity and the deviation of an individual’s preferred 

novelty from the mode this study provided some quantitative 

results into the relationship between an agent’s curious 

“personality” and their creativity, reminiscent of psychometric 

approach to the study of creative individuals. 

Fields of Cliques 
We have also investigated the behaviour of groups of agents with 

different hedonic functions. To do this we created a group of 10 

agents, half of them had a hedonic function that favoured novelty 

N=6 and the other five agents favoured novelty values close to 

N=15. Figure 6 shows the payments of creativity credit between 

the agents in recognition of interesting artworks sent by the 

agents. 
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Figure 6. The total number of messages carrying credit for being 

creative between the agents of the simulation. 

 

Two areas of frequent communication can be seen in the matrix of 

payment messages shown in Figure 6. The agents with the same 

hedonic function frequently send credit for interesting artworks 

amongst themselves but rarely send them to agents with a 

different hedonic function. There are a large number of credit 

messages between agents 0-4 and agents 5-9, but only one 

payment between the two groups – agent 4 credits agent 5 for a 

single interesting artwork. 

The result of putting collections of agents with different hedonic 

functions in the same group appears to be the formation of 

cliques: groups of agents that communicate credit frequently 

amongst themselves but rarely acknowledge the creativity of 

agents outside the clique. As a consequence of the lack of 

communication between the groups the style of artworks produced 

by the two cliques also remains distinct. 

Communication between cliques is rare but it is an important 

aspect of creative social behaviour. Communication between 

cliques occurs when two individuals in the different cliques 

explore design subspaces that are perceptually similar. Each of the 

(a) A matrix of the number of positive creative eval-
uations sent between agents.

individuals is then able to appreciate the other’s work because 

they have constructed appropriate perceptual categories. The 

transfer of artworks from a source to a destination clique will 

introduce new variables into the creative processes of the 

destination clique, the two cliques can then explore in different 

directions, just as two individuals do when they share artworks. 

Cliques can therefore act as “super-artists”, exploring a design 

space as a collective and communicating interesting artworks 

between cliques. 

 

 

Figure 7. A screenshot of a simulation clearly showing two non-

communicating cliques.  

 

Figure 7 is a screenshot of the running simulation that has formed 

two cliques. To help visualise the emergent cliques, the distances 

between agents are shortened for agents that communicate 

frequently. The different styles of the two groups can also be seen, 

with agents 0-4 producing smooth radial images with low a fractal 

dimension (~1.4) and agents 5-9 producing fractured images with 

clearly defined edges and a higher fractal dimension (~1.7). A 

brief description of the calculation of fractal dimension used in 

these studies is given below. 

A second pair of groups was simulated with more similar hedonic 

functions that favoured N=9 and N=12. The communications of 

credit between agents is illustrated in Figure 8. The results show 

that while the cliques still form and communication of credit is 

still concentrated within these cliques, there are more inter-clique 

communications than before. 

An interesting observation about the nature of the communication 

between cliques can be made from looking at Figure 8 which 

shows that most of the payments between cliques came from the 

second group with preference for N=12; only one inter-clique 

payment was made by a member of the more conservative group 

that preferred N=9, i.e. between agent-1 and agent-5. This 

observation is consistent with the earlier observation that it is 

better to be too conservative than too radical when trying to gain 

the recognition of others with different preferences for novelty. 

 

 
2 1 3 4 5 6 7 8 9 0 

Sender 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

R
ec

ei
v
er

 

  1 2    2   

  4 4    1   

1 1  1 2 2    1 

3  1   1   1  

1 4  1    1   

 1      1  2 

     1     

     1 1  3 1 

       5   

     1 2 1 2  

 
Figure 8. The communication of credit between two groups of 

agents having preference for novelty values N=9 and N=12. 

 

There are at least two possible explanations for this observation. 

The first is that agents with a higher preference for novelty can 

find the images produced by more conservative agents novel in 

comparison to the work of their fellow clique members. The 

second is that agents that prefer lower levels of novelty cannot 

appreciate the work of more radical agents and hence never 

attribute any credit to them. It is unclear from these results which 

explanation is more likely as either would explain the data. 

Further work may find that both behaviours play a role in the 

formation of cliques and the unequal communication of credit 

between them. 

The results of this experiment show that when a population of 

agents contains subgroups with different hedonic functions, the 

agents in those subgroups form cliques. The agents within a clique 

communicate credit frequently amongst themselves but rarely to 

outsiders. The stability of these cliques depends upon how similar 

the individuals in different subgroups are and how often the 

agents in one subgroup are exposed to the artworks of another 

subgroup. Further research is needed to determine whether other 

factors that can affect judgements of interestingness can similarly 

affect the social structure. 

The studies of clique formation in the fields modelled by The 

Digital Clockwork Muse provide an indication of how the 

methods of anthropology and sociology can be applied to 

artificially creative systems. As a consequence of these studies we 

can begin to understand how barriers form between different 

members of a field. The utility of this approach can be seen in the 

development of the fields of computational sociology and 

computational anthropology to investigate social phenomena. 

Potentially, similar models may be able to illuminate issues 

surrounding the emergence of “paradigm shifts” as documented 

by Kuhn [6]. 

Domains of Complexity 
To investigate the relationship between the search for novelty and 

the complexity of the resulting artworks an experiment was 

conducted to compare agents with different preferences for 

novelty encoded in their hedonic functions. To measure the 

complexity of the images the fractal dimension of selected images 

was calculated. The calculation was performed on the images after 

image processing to determine the dominant edges so that the 

fractal dimension would be that of the images as perceived by the 

agents. The fractal dimension was estimated using the box 

counting method – this is the same method that Taylor et al. [15] 

(b) A screenshot of a simulation
showing two non-communicating
cliques.

Fig. 6: The formation of cliques between agents with different hedonic functions.

The result of putting collections of agents with different hedonic functions in the
same group appears to be the formation of cliques: groups of agents that communi-
cate credit frequently amongst themselves but rarely acknowledge the creativity of
agents outside the clique. As a consequence of the lack of communication between
the groups the style of artworks produced by the two cliques also remains distinct.
The different styles of the two groups can be seen in Figure 6(b), with agents 0–4
producing smooth radial images and agents 5–9 producing fractured images with
clearly defined edges.

The results of this experiment suggest that when a population of agents con-
tains subgroups with different hedonic functions, the agents in those subgroups
form cliques. The agents within a clique communicate high evaluations frequently
amongst themselves but rarely to outsiders. The stability of these cliques will de-
pend upon how similar the individuals in different subgroups are and how often the
agents in one subgroup are exposed to the artefacts of another subgroup.

Communication between cliques is rare but it is an important aspect of creative
social behaviour. Communication between cliques occurs when two individuals in
the different cliques explore design subspaces that are perceptually similar. Each
of the individuals is then able to evaluate the other’s artefacts highly because they
have constructed appropriate perceptual categories. The transfer of artefacts from
one clique to another permits new variables into the creative processes of the desti-
nation clique, the two cliques can then explore in different directions. Cliques can
therefore act as “super-individuals”, exploring a design space as a collective and
communicating interesting artefacts within and between cliques.
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5 Extensions

The agent-based model of social creativity provided by artificial creative systems
provides a flexible framework for experimentation, which can be extended in a num-
ber of ways to explore different aspects of social creativity. This section explores
some examples of these extensions to the domain, individual, field and interactions
between these components.

5.1 Domains

The computational model of the domain presented above is lacking in many ways
compared to the dynamically evolving source of cultural knowledge that Csikszent-
mihalyi describes. Saunders (2011) has incorporated ‘language games’ in artifi-
cial creative systems to explore the possibility of computationally modelling more
complex knowledge structures through the evolution of domain-specific languages.
Computationally modelling the evolution of language in creative domains opens up
the possibility of computationally investigating a range of important aspects of cre-
ativity that are outside the scope of studies focussed on individuals, including: the
emergence of specialised languages that are grounded in the practices of a field; the
effects of a common education on the production and evaluation of creative works;
and, the emergence of subdomains as a consequence of differences in language use
across a field.

Wittgenstein (1953) proposed language games as a thought experiment to explore
the production of language as a consequence of action and interaction. An example
of a language game requires a listener to attempt to identify the topic of an utterance
within a given context and for a speaker to provide feedback on the success or failure
of the listener. Computational model of language games have demonstrated the abil-
ity for agents to evolve languages as a consequence of repeated plays (Steels, 1995).
In the extended artificial creative system proposed by Saunders (2011), agents pro-
duce utterances to describe artefacts when communicating with other agents. This
extended model has be used to explore the impact of the preference for novelty on
the formation of creative domains. For the purposes of the computational model, a
domain is determined to have formed when a population of agents agree upon a sta-
ble lexicon of words with agreed meaning for the associated works. A stable lexicon
is said to have formed when communicative success exceeds 80%.

Figure 7 illustrates how individual preference for novelty affects the size of the
lexicon and ontology, of artefacts, stored in the domain as a consequence of the
field’s actions. The results of these simulations show that for this artificial creative
system increasing the preference for novelty used by individuals to select the topic
of a language game has a modest effect on the size of the active lexicon compared to
the increase in the size of the active ontology developed across the domain. In other
words, the variety of meanings held by a field for a single word increases signifi-
cantly as a consequence of individuals searching for novel topics. The presence of
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Fig. 7: Lexicon versus ontology growth as a consequence of individual preferences
for novelty within an artificial creative system.

ambiguous words in the lexicon of an evolved languages has the potential to support
the computational modelling at the level of domain interactions as a consequence
of individuals actions (Saunders, 2011). This has implications for the modelling of
creative processes; the ability to produce and evaluate novel descriptions opens up
the possibility for modelling grounded forms of specific curiosity (Berlyne, 1960).

The evolution of domain-specific languages also presents opportunities for do-
mains to differentiate within a single culture, as they present barriers to the flow
of information between domains. Consequently, it is possible to computationally
model interactions between domains as a result of the actions of individuals (Saun-
ders, 2011).

5.2 Individuals

One of the obvious limitations of the computational model of individuals presented
here is the lack of an explicit test for the appropriateness of artefacts. Similarly, in-
tegrating alternative generative processes, including analogy-making (Falkenhainer,
Forbus, & Gentner, 1989), could provide a useful framework for evaluating the ef-
fectiveness of such creative processes within a social and cultural context. Curiosity
is not the only intrinsic motivation for creative individuals, although it is one of the
most persistent (Martindale, 1990). Other motivations for exploring a design space
can be computationally modelled, e.g. competency (Merrick & Maher, 2006).

Building on the development of computational models of intrinsic motivation
in robotics (Baranès & Oudeyer, 2009; Marsland, Nehmzow, & Shapiro, 2000),
Curious Whispers 2.0 is an example of embodied artificial creative system with three
robots exchanging simple tunes in much the same way as the software agents in the
computational models described above (Saunders et al., 2013). The use of robots
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opens up new possibilities of also engaging humans in creative activities. In the
case of Curious Whispers 2.0 the robots exchange tunes ‘in the open’ by performing
them and listening for tunes being played by other robots. This openness allowed
human participants in the creative system to intervene by playing tunes using a
custom synthesiser that could play the same three notes as the robots. The Curious
Whispers 2.0 platform has been used to explore interactions between humans and
robots when the locus of the creative activity is in the interactions between all of the
agents, rather than the human having a privileged role.

5.3 Fields

A significant shortcoming of the simulations described above is the small size of
the simulated fields. The ability to simulate larger creative societies will permit the
study of the spread of innovations and styles. It may also facilitate the emergence of
new fields as cliques attain a critical size. Spatial and topological relationships will
become more important issues in large population models.

There are several other important players in creative societies besides the produc-
ers of innovations (Policastro & Gardner, 1999) including, e.g. consumers, distrib-
utors, critics, etc. Each has their own role to play in creative societies; consumers
evaluate artefacts, distributors distribute artefacts widely, and critics distribute their
evaluations widely. Convincing other people that you’ve had a creative idea is often
harder than having the idea in the first place.

Building on the extended model of domains described above, Saunders and Grace
(2008) introduced ‘generation games’ as a type of language game where a speaker
agent takes the place of a client and an utterance represents a ‘brief’, such that lis-
tener agents, acting as designers can attempt to satisfy the brief through the produc-
tion of artefacts. Saunders (2011) also examined the possibility of computationally
model of educators within an artificial creative system.

In non-homogenous societies of agents, the selection of which agents to com-
municate with becomes an important strategy for agents seeking recognition as a
creative individual. Other computational models based on Csikszentmihalyi’s sys-
tem view of creativity have also been developed that demonstrate the important role
that authority figures, or ‘gatekeepers’, play in creative fields (Sosa & Gero, 2005).

5.4 Interactions

Artificial societies can have many different policies that control the interactions
and decision making activities of agents. For example, simulations of technologi-
cal innovation in industry show that the consideration of the costs of innovation in
decision-making can lead to complex behaviour (Haag & Liedl, 2001). Simulating
similar costs in the design process may provide a better understanding of the eco-
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nomics of creative design in creative societies and the strategies needed to manage
creativity with limited resources.

Linkola, Takala, and Toivonen (2016) have implemented artificial creative sys-
tems with more complex interactions between the individuals within a field in or-
der to select artefacts that may be added to a domain. In Linkola et al.’s model all
artefacts that pass an individual’s self-criticism test, similar to the p-creativity tests
described above, are first published and every agent engages in a two stage process
to vote on which, if any, artefact gets added to the domain. The first stage of voting
allows any agent to veto the addition of an artefact if they assess its novelty to be be-
low a threshold. If any artefacts remain in the set of published artefacts, the second
stage of voting selects the one with the highest average novelty assessment from
all of the agents to be added to the domain. Linkola et al. explored the effects of
varying the self-criticism and veto thresholds on the collective effort required by a
field to achieve domains of a given size and concluded that raising the self-criticism
threshold reduces the collective effort, while raising the veto threshold maintains
the novelty of the artefacts in a domain.

6 Conclusion

The computational modelling of creative societies opens up new opportunities for
computational creativity that go beyond the modelling of the romantic figure of the
lone creative genius, or the utilitarian assistant to the human creative. The aim of
this chapter has been to present an approach to computationally modelling creativity
using multi-agent systems and show how this can be used to explore aspects of social
and cultural creativity. By using agents as models of individuals within creative
fields, the framework provides a flexible basis for developing multi-agent systems
that can be used to study the interaction between personal and social judgements of
creativity. This chapter has also attempted to show that this type of model is open
to extension to include other aspects of the social and cultural context for creative
individuals, e.g., domain specific languages.

There is no doubt that computational modelling will continue to focus on devel-
oping analogs for creative cognition and individual creative behaviour. After all, the
promise of developing computer programs able to solve problems in ways that are
obviously “creative” is so tantalising that we cannot help ourselves. What this chap-
ter seeks to accomplish, however, is to show that it is possible to develop relatively
simple computational models that accommodate both personal and socio-cultural
aspects of creativity.
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