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Abstract

This paper presents a framework for the interactions between the processes of mapping

and re-representation within analogy-making. Analogical reasoning systems for use in de-

sign tasks require representations that are open to being reinterpreted. The framework,

Interpretation Driven Mapping, casts the process of constructing an analogical relation-

ship as requiring iterative, parallel interactions between mapping and interpreting. This

paper argues that this interpretation-driven approach focusses research on a fundamental

problem in analogy-making: how do the representations that make new mappings pos-

sible emerge during the mapping process? The framework is useful for both describing

existing analogy-making models and designing future ones.

The paper presents a computational model informed by the framework, Idiom, that

learns ways to reinterpret the representations of objects as it maps between them. The

results of an implementation in the domain of visual analogy are presented to demon-

strate its feasibility. Analogies constructed by the system are presented as examples.

The Interpretation Driven Mapping framework is then used to compare representational

change in Idiom to that in three previously published systems.

Keywords

Computational analogy-making, representation, interpretation.

1 Introduction

The production of a new analogy involves the construction of a new, often complex,

relationship between two objects that was not previously part of the system’s knowledge

(Gick and Holyoak, 1980; Gentner, 1983; Hofstadter, 2008). This new relationship, which

we call an “association”, is then used to transfer knowledge from the source domain to

that of the target (Gick and Holyoak, 1983; Detterman and Sternberg, 1993; Barnden

and Holyoak, 1994; Holyoak et al., 1994; Gentner and Holyoak, 1997; Robertson, 2000).

We concern ourselves with the former process – mapping – which is integral to both
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analogical reasoning and related processes such as conceptual blending (Fauconnier and

Turner, 2003) and metaphor (Lakoff and Johnson, 2003).

Terminological precision in this field often suffers from the ability of many relevant

words to refer both to processes and their results, so we adopt the following definitions

throughout this paper. Mapping is the process of searching a source and a target object

for a set of shared relationships on which to base a new analogy, while an association is the

resulting set of relationships. Interpreting is the process of changing the representation of

source and target objects to enable mapping, while a transformation is the resulting func-

tion which produces the new object representations from the prior ones. The processes

of mapping and interpreting operate in parallel, iteratively generating candidate associ-

ations and transformations until a satisfactory pair of candidates – an association and

the transformation which enables it – is found. Following Structure Mapping (Gentner,

1983) we adopt the notion that an association connects a set of relationships between

features of one object’s representation to an analogous set of relationships between an-

other object’s representation. Analogy depends on compatible relational representations

(Doumas et al., 2008; Penn et al., 2008; Holyoak, 2012). Our focus is on how that repre-

sentation can be re-interpreted during and because of the process of analogical mapping,

and the effect of this reinterpreting on the resultant association.

Viewed with this focus, the process of mapping can be considered a search of the space

of possible new relationships between two objects, where a new relationship is defined

as a previously undiscovered commonality. This commonality can be a shared feature, a

shared relationship between components, or any other matching representational struc-

ture. Due to the combinatorial nature of a space of possible mappings the search can be

computationally expensive, but conceptually the problem is simple: find matching pairs

of representational elements. Many models of analogy that perform this kind of search

exist, with ANALOGY (Evans, 1964) being a very early example and the Structure Map-

ping Engine (Falkenhainer et al., 1989) being the best known. These models and their

computational implementations demonstrate that locating the shared properties between

objects is a solved problem when compatible representations already exist.
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The representation of an object that is conducive to a particular analogical mapping

may not be familiar or typical. Contextually salient features may not be regarded as

central to an object’s description, and nor might be the representational structure in

which those features are placed. Analogical mapping does not necessarily concern the

design attributes that are considered most salient to an object considered in isolation. The

focus of this research is on how two objects with initially disparate representations can be

reinterpreted in such a way as to be compatible for mapping. This parallels the distinction

between constructing analogies and solving them identified in Harpaz-Itay et al. (2006).

Previous approaches to this problem have focussed on building representations from sub-

symbolic elements (Hofstadter and Mitchell, 1992), iteratively constructing relational

representations (Doumas et al., 2008), reconstructing representations from memory into

the current context (Kokinov and Petrov, 2001), or by activating progressively more

abstract concepts (Petkov et al., 2011). Models of analogy-making in design have focussed

on projecting representations into an ontology that characterises their function(s), and

then mapping based on patterns (Visser, 1996; Qian and Gero, 1996; Griffith et al., 1996;

Bhatta and Goel, 1997; Griffith et al., 2000), a special case of mapping by abstraction.

This work seeks to define a general framework for how representations change during

mapping that can both inform future computational models and serve to compare these

existing approaches to representational transformation.

We apply this framework in the construction of a computational model of analogical

mapping, Idiom, and describe several examples generated by an implementation of that

model that could not have been constructed without interpretation-driven mapping. The

implementation of Idiom is intended to serve as a proof-of-concept of both the framework

and model, demonstrating their computational feasibility and potential as an approach

to analogy-making. We then compare the way representations change in Idiom and three

other analogy-making systems, demonstrating the differences of our approach.
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2 The interpretation-driven mapping framework

Constructing representations suitable for analogy in a complex creative domain (such as

design) is a complex task. At the heart of this complexity is a chicken-and-egg question:

an association cannot be found without a representation that supports it, and yet whether

a representation contains mappable elements cannot be determined without searching.

Without representations that compatibly express the relations encapsulated within both

objects, neither representation nor mapping can completely precede the other. We de-

velop a framework for conceptualising analogy in which these two processes take place

interactively and in parallel. The central premise of our framework is that mapping

should inform future representations, and representations should inform future mapping.

Given symbolic representations of a source and target object, we model how those

representations change over the course of the mapping process. We focus on this com-

ponent of the analogy-making process to investigate how the context of searching for a

mapping between source and target affects their representations. To facilitate this focus

we consider representation change during mapping separately from representation con-

struction prior to mapping. The latter has long been considered a central component

of analogy-making and incorporated into models (Koestler, 1967; Wolstencroft, 1989;

Chalmers et al., 1992; French, 2002), we focus on the former as a distinct but equally

important consideration. This focus on representational change during mapping echoes

the discussion on ontological mismatches in (Davies et al., 2003).

We propose a framework, “Interpretation-driven Mapping” (IDM), for this notion of

representational transformation. In this formulation interpreting is dependent on candi-

date associations, i.e. how representations change depends on the progress of the search

for mappings, and mapping is dependent on candidate transformations, i.e. how mappings

are searched for is dependent on the progress of the search for representational changes.

Our framework’s name derives from this interaction: mapping is interpretation-driven

and vice versa. As a consequence of our desire for generality in this framework we do not

place any constraints on how the objects are represented, how their symbolic representa-

tions are initially constructed, what constitutes a satisfactory pair of candidates, or what
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happens to the association/transformation pair once it has been found.

Prior approaches to re-representation during analogical mapping include the minimal

ascension method for extending Structure Mapping in Falkenhainer (1990), in which non-

identical relationships can be considered contextually mappable only when they have a

common superordinate in the hierarchy of relationships. This is similar to the ontological

approach used in Qian and Gero (1996), where relationships are mappable if they perform

the same function, and to that used in McDermott (1979) and Davies et al. (2003),

where attributes are abstracted iteratively until they are mappable. Such approaches

can be extended to leverage relational hierarchies from external sources like WordNet,

as in Holyoak and Thagard (1989), or from hierarchies inferred from large corpora, as in

Turney (2008). Our iterative strategy for re-representing and mapping is similar to that

adopted in Yan et al. (2003), although IDM’s interpreting process is more general.

The IDM framework, Figure 1, highlights the interactions between the re-

representation of objects and the search for mappings. The perception process(es) that

are precursors to the interpreting/mapping cycle, as well as the transfer process(es) that

follow it are included for illustrative purposes only: IDM makes no assumptions about

those processes. We acknowledge transfer’s crucial role in analogy-making (Gick and

Holyoak, 1983; Hall, 1989; French, 2002), and its absence is a matter of scope, not of

exclusion. IDM focusses on the cyclical relationship between mapping and interpreting.

Perception

Interpreting

Mapping

Transfer

objects
(sensory)

association

transformation

analogy

Interpretation-driven mapping (IDM)
Analogy-making

candidate 
transformations

candidate 
associations

objects
(symbolic)

Figure 1: The Interpretation-driven mapping (IDM) framework (centre) embedded in a
model of computational analogy. IDM addresses representation construction and paral-
lelised search for mappings and object re-interpreting.

It has been argued (Chalmers et al., 1992; Kokinov and Petrov, 2001; French, 2002)
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that the perception of analogues-to-be is not a precursor to the search for mappings but

a concurrent process. The IDM framework supports and extends this notion, with rep-

resentational change during mapping being its principal driver. While the “Perception”

process in Figure 1 operates prior to the processes of the framework, this sequential and

discretised depiction allows us to focus on how representations change during the map-

ping process. We separate the processes acting to produce the representation of an object

that exists when mapping begins (“Perception”) from the processes that act to change the

representation of that object during mapping (“Interpreting”) based on their roles only,

and make no assumptions about the similarity or difference in their mechanisms. We

also refrain from stating that the symbolic representation which is present at the start of

mapping is in any way “untransformed” or “canonical”, based on literature in embodied,

constructivist and situated cognition (Clancey, 1997; Schacter et al., 2000; Mahon and

Caramazza, 2008) that disputes the existence of such Platonic conceptualisations. The

initial representation is merely the representation existing at the time mapping begins,

and the basis for representational transformations applied during that process.

The IDM framework does not prescribe analogy-making completely, it is a framework

for the interactions between representation and mapping, not a framework for the whole

of computational analogy. The framework also does not make any assumptions about

the nature of the mapping and interpreting processes or the representation of objects,

transformations, and associations. This distinguishes it from previous approaches, such

as the VAE model (Sowa and Majumdar, 2003), which utilise a similar structure but limit

possible transformations. The framework addresses the “which-came-first?” question in

representation in analogy-making by positing that the new relationship between objects

and the representations that enable it arise out of a simultaneous, interactive process.

Using the principles of IDM it becomes possible to describe how any computational

analogy-making model incorporates representational change into mapping. While other

models were not derived from our framework, framing analogical representation in this

way can enable scrutinisation and comparison of otherwise disparate systems. The three

core principles of the framework described, and the questions that arise from them when
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inspecting an analogy-making model through the lens of IDM, are as follows:

• Mapping can be conceptualised as a search for an association between source and

target. Constructing a new association is a search through a space of possible

associations. Mapping is an iterative process that produces and evaluates candidate

associations. From this two questions arise about a model:

1. What bounds the space of valid associations constructible by mapping?

2. What causes an association to be selected by mapping?

• Interpreting can be conceptualised as search for a transformation of source and

target. Constructing representations that will be used in the association produced

by mapping is a search through a space of possible transformations (to be applied to

the initial object representations). Interpreting is an iterative process that produces

and evaluates transformations. From this two questions arise about a model:

3. What bounds the space of valid transformations constructible by interpreting?

4. What causes a transformation to be selected by interpreting?

• Interpreting occurs in parallel with mapping. The two processes operate simultane-

ously, with candidate transformations affecting mapping and candidate associations

affecting interpreting. From this two questions arise about a model:

5. How do candidate transformations selected by interpreting affect mapping?

6. How do candidate associations selected by mapping affect interpreting?

3 Idiom: a computational model derived from IDM

Idiom is a computational model of the association-construction component of analogy-

making based on the IDM framework. Idiom demonstrates the feasibility of the the

principles of parallel search and re-representation, and is so named for its ability to

construct and operate on non-literal representations of objects. The model describes one

way representations can change during the construction of an analogy, and how those
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changes both affect and are affected by the search for mappings. Idiom provides one

possible set of answers for the six questions raised at the end of Section 2.

Interpretation-driven mapping involves two bi-directionally interactive processes;

mapping (or more generally the search for solutions) and interpreting (or more gener-

ally the re-framing of the problem). The Idiom model adds a third process: Perception,

by which the representations comprised of object features and the relationships between

them are constructed from the sensory representations initially observed by the system.

As an instantiation of the IDM framework Idiom outputs a new association (a set of

shared relationships between the source and target objects) and the representational

transformation under which that association exists.

3.1 Model overview

We develop a symbolic representation of the three processes which comprise Idiom –

perception, interpreting and mapping, shown in Figure 2.

perception

interpreting

mapping

candidate
associations
a ∈ A

objects
o1, o2

evaluation function selected association
awin

relational reps.
r(o1),r(o2)

candidate transformations
& transformed objects
t ∈ T, τ(r(o1)),τ(r(o2))

selected transformation
twin

p

q
m

i

Figure 2: The three processes of Idiom, showing the symbolic representations of their
inputs and outputs. Idiom is a computational model that instantiates the IDM framework

Our model of representational change in analogy-making begins with the model ob-

serving sensory representations of two objects. We do not treat the “source” and “target”

objects differently as in without transfer the two are interchangeable. We refer these ob-

jects as “sensory representations” to emphasise that there is no veridical representation

of any analogue, only observations made through the system’s perceptual faculties. The

symbols used to represent the Idiom model are as follows:
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a is a candidate association. An association a ∈ A is an ordered nonempty
list of pairs of features, with the first of each pair being a node in τ(r(o1))
and the second being a node in τ(r(o2)).

awin is a candidate association that has been evaluated as satisfactory under
the evaluation function

q
−→, leading to the Idiom model ceasing its search.

A is the set of candidate associations being considered by the mapping
process.

r(o1), r(o2) are the relational representations of the two objects that result from
perception.

o1, o2 are the sensory representations of the two objects.

t is a candidate transformation.

twin is the transformation that was applied when a satisfactory association
was discovered.

T is the set of candidate transformations being considered by the interpret-
ing process.

τ is a candidate transformation that has been applied to the relational
representations.

τ(r(o1)), τ(r(o2)) are the relational representations after the active transformation has
been applied.

i−→ is the process of interpreting that uses the current association candidates
to generate new ways to transform the object representations, and then
selects one transformation to apply to them. See Section 3.4 for details.

m−→ is the process of mapping that searches the interpreted relational rep-
resentations for associations based on Structure Mapping Theory. See
Section 3.3 for details.

p
−→ is the process of perception that constructs relational representations

from the sensory representations. See Section 3.2 for details.
q
−→ is an evaluation function which can be applied to associations.

The model’s perception process,
p
−→ constructs the relational representations used in

search, and can be represented as (1). Relational representations consist of a set of

features and a set of relationships between those features, and are a commonly adopted

representation in analogy-making (Gentner, 1983; Holyoak and Thagard, 1989; Hofstadter

and Mitchell, 1992; Kokinov and Petrov, 2001).

p
−→ := o1 → r(o1), o2 → r(o2) (1)

The model’s mapping process, m−→ searches for associations between relational repre-

sentations, and can be represented as (2). As input it takes the transformed objects

for searching and the set of candidate associations for updating. In Idiom the Mapping
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process is dependent only on the current active transformation and its affects on the rela-

tional representations. This is a simplification of the IDM framework, in which mapping

is reliant on the set of candidate transformations, allowing multiple transformations to

influence mapping simultaneously, rather than a winner-takes-all approach used here. We

denote the set of candidate associations after an iteration of the mapping process as A′

to indicate it has been updated. Idiom follows the Structure Mapping Theory (Gentner,

1983) definition of analogical mapping, in which a mapping exists between a common

subset of relationships between the features of the objects, although we reserve the word

“mapping” for the process. As in Section 2 we refer to the shared subset of relationships

between features that results from mapping as an “association”. We embed Gentner’s

theory in a system where the relational representations are iteratively transformed by an

interpreting process in parallel with the search for mappings.

m−→ := τ(r(o1)), τ(r(o2)), A→ awin ∨ A′ (2)

The model’s interpreting process, i−→, uses the set of candidate associations to construct

new ways of transforming the object representations, and can be represented as (3). As

input it takes the object representations and the set of candidate associations for use

in generating new transformations, and both the current active transformation and the

set of candidate transformations for searching and evaluation. We denote the active

transformation and set of transformations after an iteration of the interpreting process

as τ ′ and T ′ respectively to indicate they have been updated. Transformations act on

the relational representations, and may include the addition or removal of features, or

the addition, removal or relabelling of relations. New transformations are generated

based on what changes could improve the performance of associations in A according

to the same success measure used to select candidate mappings,
q
−→. Transformations

are generated, evaluated and stored, with the most promising transformation at each

point in time becoming the active transformation τ that is applied to the objects. This

characterisation of analogical mapping as being transformation-dependent echoes the

definition of similarity as “representational distortion” (Hahn et al., 2003; Hodgetts et al.,

2009).

10



i−→ := r(o1), r(o2), A, τ, T → T ′, τ ′, τ ′(r(o1)), τ
′(r(o2)) (3)

Associations can be evaluated by
q
−→ under any transformation, allowing the system to

iteratively improve its candidate associations based on the available transformations and

its candidate transformations based on the available associations. A candidate association

may specify unmappable feature pairs (those not connected within their respective objects

under the current transformation). These invalid shared associations are ignored by
q
−→.

Mapping and interpreting both operate incrementally, with each updated set of candi-

date associations A being the basis for an updated τ , which is then in turn the basis for an

updated A and so on. This iterative interaction implements the fundamental principles

of the IDM framework. Below we describe the three processes in more detail.

3.2 Perception

The perception process in the Idiom model,
p
−→, takes low-level sensory representations of

a form appropriate for the domain in which it is implemented and constructs from them

the features and relationships used in mapping. To construct relational representations
p
−→

extracts features from the sensory representations, clusters those features into concepts,

and then constructs relationships between features based on their sensory and conceptual

contexts. Details of the perception processes are particularly affected by the choice of an

implementation domain, and in this model specification we adopt an abstract framing to

maintain broad applicability. The five processes that make up perception, Figure 3, are:

• Feature detection identifies and describes elements of the sensory representation

which become the features of the object on which analogies will be based. Feature

definitions are domain specific.

• Concept recognition classifies features into known conceptual categories based on a

domain specific similarity function.

• Concept generation constructs new conceptual categories from the features that

were not able to be classified, which are then added to the set of known concepts.

11



• Featural relationship construction describes relationships between features based on

the properties of those features.

• Conceptual relationship construction describes relations between features based on

the concepts that they instantiate, for example between two features that are in-

stances of similar concepts.

o1, o2

r(o1), r(o2)
Feature

Detection

Concept
Recognition

Concept
Generation

unrecognised features

Concepts
conceptual 
representation

relational 
representation

known 
concepts

featural representation

Conceptual Relation
Construction

Featural Relation
Construction

Figure 3: The structure of the perception process of our model. The sensory representa-
tions are converted into featural, conceptual, and relational representations.

Feature detection acts on the sensory representations o1 and o2 to extract a set of

features. A “feature” is a notion specific to the domain in which Idiom is implemented,

and may be any element of the object, either a discrete component or a description of

some aspect of the whole. For example, in a musical domain a feature might be a phrase

of music, while in a visual domain a feature might be a shape.

Each feature has a description embodying its properties, which is represented as a

list of attribute/value pairs . The model requires that it be possible to calculate the

similarity between two features for the purposes of categorisation, but otherwise makes

no assumptions about their nature. The remainder of the perception process concerns

the construction of the relationships between these features.

Concept recognition is one of the two processes involved in clustering the feature

representations into conceptual groups for the purpose of inferring relationships between

them. Concept recognition attempts to place the features extracted by feature detection

into known categories, each a region in the space of possible features which we refer to as

a “concept”. The concept recognition process determines which of the features observed

in the objects belong to existing concepts. The set of known concepts persists over
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multiple iterations of the Idiom association-construction process. Features not matching

an existing concept are passed to the concept generation process.

Concept generation is the second of the processes involved in classifying features by

their conceptual categories. Those features which were not classifiable within the current

conceptual hierarchy are placed into new concepts as needed. After both concept recogni-

tion and concept generation have operated on the feature representations all features will

have been tagged as members of at least one conceptual category. The conceptual and

featural representations are then used in the construction of relational representations.

Featural relationship construction produces relationships between features based on

their descriptions. A relationship consists of an ordered pair of features and a relation

that connects them. This relation expresses some property of the second feature in the

pair, the ‘destination feature’, in relation to the first feature, the ‘originating feature’.

Relations are expressed relative to the originating feature to increase their generality for

mapping. For example, “the destination feature is above the originating feature”, “the

destination feature is twice the size of the originating feature”, or “the destination feature

is a component of the originating feature”.

Conceptual relationship construction produces relationships between features based

on the conceptual categories into which they have been placed. These express relations

between the concepts two features instantiate, for example “the originating feature instan-

tiates the same concept as the destination feature”, “the originating feature instantiates a

similar concept as the destination feature”, or “a concept instantiated by the originating

feature’s is a parent concept of one instantiated by the destination feature”.

The resulting relational representations, consisting of a set of features and a set of

relationships between then, are then searched based on Structure Mapping Theory (Gen-

tner, 1983): features in the source and target that share a pattern of relationships can

become part of an association. Idiom performs this search whilst iteratively reinterpreting

the object representations to enable otherwise-impossible associations.
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3.3 Mapping

The mapping process in the Idiom model, m−→, searches the representations provided by

p
−→ in the context of the transformations applied by i−→. Mapping and interpreting itera-

tively search and transform the relational representations until a suitable association is

constructed. An individual iteration of the mapping process produces an updated set of

candidate associations on which the next iteration of the interpreting process can oper-

ate. Mapping operates on the principles of Structure Mapping (Gentner, 1983), searching

for sets of relationships between features within the individual objects that form shared

patterns between the objects. For example, two objects could be associated by a pattern

of features connected by a series of “immediately above” relationships. The two processes

that make up m−→, Figure 4, are:

• Association search generates new candidate associations based on shared relation-

ships between the transformed source and target object representations. While

there may not be a sufficient pattern of such relationships in the untransformed

representations, the transformation acts to facilitate better associations.

• Association evaluation evaluates the patterns of relationships found by association

search using the quality measure
q
−→. Each candidate receives an evaluation via

that measure, with evaluations over a threshold resulting in an association being

deemed suitable. If a suitable association is found the process returns a solution,

completing this run of the Idiom model. If no suitable mapping is found the set of

current candidates is returned for use by the interpreting process.

awin
(conditional on  q  )

Association
Search

Association
Evaluation

Candidate
Associations

current candidate associations
new (ranked) candidate 
associations

new (unranked) candidate 
associations

τ(r(o1)), τ(r(o2))

Figure 4: The structure of the mapping process of our model. The two transformed
object representations are searched for associations that fit the evaluation measure.
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Association search discovers associations – sets of pairs of features which can be

considered analogous – by searching for shared relationships in the transformed represen-

tations. This search applies not to the representations produced by perception, r(o1) &

r(o2), but to their reinterpretations under τ . In the very first iteration of the mapping

process τ defaults to a null transformation in which the objects are unchanged, meaning

that initially r(o1)⇔ τ(r(o1)) & r(o2)⇔ τ(r(o2)).

Association evaluation determines the value of each candidate association as measured

by
q
−→. While the specific measure is domain specific, Structure Mapping requires that

relations must match exactly for them to be considered a valid component of the mapping.

q
−→ can evaluate mappings in a variety of ways, including measures based on the size (in

features) of the mapped subset or measures based on the domain-dependent meaning of

the features or relationships within that set.

Associations which map a pair of features within the source to a pair of features within

the target must map at least one relation between them. For example assume a group

of features within one object are all the same size and all instantiate the same concept.

Within the second object is a group of features that all share the same size, but instantiate

different concepts. The association evaluation process would find an association between

these two groups to be valid based on the shared size relationships alone. This is the

advantage of reducing complex relations to a set of simple relations.

The mapping process updates the set of candidates. If a candidate association a scores

sufficiently highly at
q
−→ then the Idiom model terminates, returning a and τ . Otherwise

i−→ is executed and the cycle of searching and transforming continues.

3.4 Interpreting

The interpreting process in the Idiom model, i−→, uses the current set of association candi-

dates produced by the last iteration of m−→ to determine a new active transformation from

among the candidates. To do this i−→ constructs, evaluates and applies transformations.

The three processes that make up i−→, Figure 5, are:

• Transformation search constructs new transformations by searching the current set
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of candidate associations for what could make them successful.

• Transformation evaluation considers all transformations in the current set of candi-

date transformations against the candidate associations to determine which should

be the active transformation τ .

• Transformation application applies the newly updated active transformation τ ′ to

the relational representations of the source and target objects, reinterpreting them

and affecting the next iteration of the mapping process.

τ, r(o1), r(o2)
Transformation

Search
Transformation

Evaluation

Candidate
Associations

Candidate
Transformations

current candidate transformations new (ranked) candidate transformations

new (unranked) candidate
transformations

Transformation
Application

τ´

τ´(r(o1)), τ´(r(o2))

Figure 5: The structure of the interpreting process of the Idiom model. Transformations
are generated from candidate associations. One is selected as the active transformation
τ and applied to the object representations.

Transformation search is the process by which new transformations used in interpret-

ing are constructed. A generate-and-test approach is used to create transformations that

would make associations in the current candidate set more successful at mapping between

the two objects. Transformations are applied to the representations being searched by m−→.

Each transformation must be general enough to be applied to any possible relational rep-

resentation. Possibilities include the deletion, addition, editing, consolidation or splitting

of both features and relations. A transformation may affect the relational representations

by editing and re-running the Perception process to produce altered representations.

As the purpose of interpreting is to render non-matching relationships matching, the

simplest transformation(s) involve the editing of relations. An example of such relabelling

would be a “spatial reversal” transformation, under which all relationships involving “in

front of” were treated as equivalent to “behind”, and so on. This transformation would

parallel the “opposites” slippage in Copycat (Hofstadter and Mitchell, 1992) that enabled
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analogies such as “ABC : ABD is like XYZ : WYZ”. An alternative approach to defining

transformations is the adjacent node combination of the VAE model of analogical reason-

ing (Sowa and Majumdar, 2003). Processes by which transformations can be constructed

include: 1) attempts to improve current highly-performing associations according to
q
−→,

or 2) recalling transformations that have been successful on previous analogy problems.

Transformation evaluation produces an evaluation of all the candidate transforma-

tions in T by applying them to the candidate associations in A and measuring their

quality with
q
−→. Given the computational complexity of this a sampling approach is likely

warranted, involving selecting a subset of “test” candidate associations from A for each

candidate transformation in T . This selection could be weighted by
q
−→(a). Once an eval-

uation of the quality of each transformation in T is known one candidate becomes τ and

influences mapping.

Transformation application applies the current τ (either new or retained from the

previous increment) to the representations r(o1) & r(o2). After the new transformation

is applied this increment of the interpreting process completes and mapping continues.

4 Constructing associations with Idiom

We have developed an implementation of the Idiom model that demonstrates its feasibility

and serves as a proof-of-concept of the IDM framework. We present selected results from

the implementation showing its capacity for interpreting and mapping.

4.1 Implementing Idiom

The implementation of Idiom described in this paper is in the domain of visual analogy,

constructing relationships between images and drawings based on their spatial properties.

The Idiom model is domain agnostic, but this implementation serves as a proof-of-concept

of both Idiom and the IDM framework from which it is derived. Associations constructed

by this implementation will be based on perceptual relationships, such as geometrical

or spatial relationships between shapes. This system can perform mapping on shapes
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similar to those of CogSketch (Lovett et al., 2009b,a; Forbus et al., 2011), but our focus

is on representational transformation and the integration of representation and mapping,

rather than on relational abstraction. Visual associations are an important component

of many design processes in many design domains.

The implementation takes visual representations of objects in the form of 2D vector

drawings, extracts features from them, constructs relationships between those features

and then makes analogies using those relationships. The definition of a “feature” in this

implementation is a minimal closed shape, and features are described using the outline

of these shapes, not their weight, colours or other styling. These shape features are cate-

gorised into groups based on the similarity of their outlines using a centroid-radii method

for shape description proposed by Tan et al. (2003). The shape-based representations

are analysed for a variety of featural relationships, including relative scale, orientation,

position and the sharing of edges and vertices. Conceptual relationships include concep-

tual similarity and conceptual identity. Featural relationships are abstracted into discrete

categories like “slightly smaller” or “10◦ difference in orientation”.

Mapping is computationally modelled as edge-labelled subgraph isomorphism search,

with each feature being a node and each relation an edge. Exact maximum subgraph

isomorphism search is computationally intractable, (Garey and Johnson, 1979; Kann,

1992) but here approximate solutions are acceptable. We adopt a genetic algorithm-based

subgraph isomorphism approximation based on Wang and Zhou (1997) and Cross et al.

(1996), in which the genotype is a set of node:node connections between object graphs

and the fitness function is based on the number of connections that are valid (our quality

measure). Transformations applied to the object graphs change the fitness landscape by

affecting the validity of these mappings. A population of candidate associations between

the source and target are created randomly and then evolved, with the quality measure

q
−→ acting as the fitness and the current τ applying to all evaluations. The quality measure

is based on the size of the largest contiguous subgraph validly mapped, i.e. the number

of features connected by a pattern of shared relationships in the analogy. Mapping size

is only an approximation of analogical quality, but its simplicity permits us to focus on
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interpretation.

Transformations in this implementation select one or more pairs of relations and treat

them as interchangeable for the purpose of mapping. This enables interpreting of the

kind “treat X in the source object as if it were the same as Y in the target object”.

This gives more interpretive freedom than the approach used in Galatea (Davies and

Goel, 2001; Davies et al., 2003; Davies and Goel, 2003), which can only draw from a set

of pre-specified transformations. Selection of transformations is based on the question

“what transformation would improve the mappability of these two objects the most?”

This relies on underlying syntactic commonality rather than any semantic content. When

two patterns of relationship share the same structure, but not the same relationships, a

transformation can be constructed to treat them as mappable. For example, an object

containing a line of shapes of increasing sizes could be associated with another object

containing a line of shapes of increasing orientations. The approach is related to the

corpus-based label substitution in EMMA (Ramscar and Yarlett, 2003), where similarity

along the dimensions that best describe a large dataset of examples is used to substitute

contextually similar word. Idiom, by contrast, seeks out transformations that can most

improve the mappability of the source and target object.

The Idiom approach expands the space of possible transformations compared to pre-

vious systems, allowing a greater diversity of mappings. It does so at the cost of expli-

cability: transformations are justified based on their effect (enabling a more complete

mapping) rather than their meaning (the relationship between the concepts so trans-

formed). Section 5 compares Idiom’s capabilities with other analogy systems.

4.2 Example analogies in visual art and ornamental design

A variety of vector representations of visual art objects, ornamental design motifs and

architectural objects were drawn from images, taking care to select objects which could

be meaningfully represented by lines and shapes. Several of the resulting associations

are presented here, along with descriptions of how they were produced. We demonstrate

that without IDM a structure-mapping based system could only have constructed these

19



analogies with task-specific representations.

4.2.1 Example 1

Figure 6 shows the first example of the output of the computational implementation

of Idiom. The figure depicts the vector representations of Object 1 (o1), a Hittite sun

symbol, and Object 2 (o2), a French empire motif, both from Humbert (1970). The thick

solid lines - both grey and black - indicate the lines that make up the object representation

itself, with the black lines indicating object features that are part of the association. The

thin solid lines connecting features in Object 1 with features in Object 2 indicate the

pairs of features that have been mapped by the successful association awin. The thick

black dashed lines joining features within each object indicate the relationships between

those features that form the basis for the mapped relationship. Each of these connections

is labelled with the relationship it represents. The grey box at the bottom of the figure

contains the current value for the active transformation τ .

Object 1 Object 2τ:
~50° Δrot = ~20° Δrot

~20° Δrot

~50° Δrot

~50° Δrot

~50° Δrot

Figure 6: An association produced by Idiom which maps adjacent points of the seven-
pointed star in Object 1 to adjacent petals of the top floret in Object 2, based on inter-
preting the “50◦ orientation difference” relationships between the star-points to be like
the “20◦ orientation difference” relationships between the petals.

In Fig. 6, the seven points of the star in o1 are mapped to the seven petals of one floret

in o1, with adjacent points being mapped to adjacent petals. Each of the adjacent pairs

of points in Object 1 are connected by an “approximately 50◦ difference in orientation”

relationship (abbreviated using ∆rot in the diagrams), while each of the adjacent pairs

of petals in Object 2 are connected by an “approximately 20◦ difference in orientation”
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relationship. The association was made in the presence of a transformation, τ , equating

these two relationships. Idiom is making the analogy between the star and the floret in

the context of treating those two relationships as alike. Idiom possesses no knowledge

about the relative similarity or difference of the two orientation relationships, and they

could just as easily have been one orientation relationship and one of scale, or any other

relational type possessed by Idiom. The transformation that enables this mapping was

selected on the syntactic similarity of the representations of the two objects, which each

possessed a structurally similar pattern of homogeneously labelled edges. Naive structure-

mapping would have failed to construct this association without additional knowledge.

Idiom’s process to construct the association seen in Figure 6 began with the system

attempting to map between the untransformed representations. m−→ creates (initially by

chance) a candidate association, a1, that maps at least one pair of adjacent star-points to

a pair of adjacent petals. a1 is not of any value by the quality measure
q
−→ as there is no

suitable transformation available to equate the two different orientation labels. i−→ then

works backwards to construct a transformation that would increase the value of a1, and

one of the candidate transformations thus constructed is the one shown in Figure 6, which

we will call t1. As features can be mapped using t1 that cannot be mapped without it, it

outperforms other available transformations – including the default null transformation

in which the representations are unchanged – and becomes the active transformation τ .

This transforms the representations to treat the 20◦ and 50◦ orientation relations as alike.

m−→ then adopts a search trajectory to maximises the number of associated nodes given

τ = t1. This produces an association like the one in Figure 6.

Theoretically, if the objects were represented in precisely the right way, the association

depicted in Figure 6 could be constructed without the use of representational transforma-

tions. A relationship like “rotationally adjacent”, or “sharing a common axis of rotation”

could produce mappable representations of Objects 1 and 2 for which no transformational

process was needed. Alternatively, relationships between relationships, such as those used

in some Structure Mapping Theory based systems (Falkenhainer et al., 1989; Forbus et al.,

1995), could be used to describe the orientation differences in a more general way, and
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these second-order relationships would be mappable. However these approaches require

significant prior knowledge on behalf of the experimenters to construct representations of

the two objects that feature compatible relationships. The Idiom method discovers ap-

propriate transformations from regularity in the structure of the object representations,

rather than from compatible relational labels.

Idiom can produce different results when run repeatedly with the same stimuli. Figure

7 shows the result of another run involving the same two objects. In this case six of the

seven points of the star in Object 1 are mapped to the two outer-most petals of each

floret in Object 2. The difference in orientation between every third star-point (150◦) is

associated with the difference in orientation across each floret and between each floret,

which are both 120◦. The analogy-making system has interpreted these two different

relationships as being alike, transforming different parts of the object representations to

the first example (Figure 6) and producing a different analogy.

Object 1 Object 2τ:
~150° Δrot = ~120° Δrot

~150° Δrot

~120° Δrot

Figure 7: A different association between the same two objects, in which every third
point in the seven-pointed star in Object 1 is mapped to the set of outermost petals on
the three florets in Object 2.

These examples demonstrate that the Idiom model can produce analogies between

simple visual objects. The computational implementation of this model has produced

multiple varied outputs depicting associations that are different in both appearance and

substance. It does this by “forcing” mappings between semantically different relationships

based on the underlying syntactic similarities of the objects being mapped, such as the

patterns of 120◦ and 150◦ relationships transformed in Example 2 and the similar pattern
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transformed in Example 1.

4.2.2 Example 2

Among the vector representations of art and design objects provided to the implemen-

tation were a line-art version of M. C. Escher’s 1938 painting “Sky and Water I” and

a nineteenth century wrought ironwork pattern intended for use in a gate (Cottingham

(1824) via Cliff (1998)). An association between these two objects can be seen in Figure

8, where the four rows of fish which make up the bottom half of Object 3 have been

mapped to the four rows of quadrilateral-like shapes in the middle of Object 4. The

features of each row of fish belong to their own conceptual category, as the fish become

progressively more abstract towards the centre of the painting, resulting in a ”similar

concept” relationship existing between adjacent rows. The curved bars which make up

the ironwork pattern in Object 4 create a similar pattern, with the gaps between the bars

becoming slightly smaller with each successive row. The Idiom implementation uses a

transformation that equates these two relationships and maps between the fish and gaps.

τ:
similar concept = slightly smaller

similar concept
slightly smaller

Object 3 Object 4

Figure 8: An association produced using Idiom which maps the triangular pattern of
increasingly more abstract fish in Object 3 to the triangular pattern of increasingly smaller
gaps in the gate in Object 4, based on interpreting the ‘similar concept’ relationship
between the fish to be like the ‘slightly smaller’ relationship between the gaps.

Figure 8 shows that Idiom can construct relationships between structurally similar

representations even when the relationships involved are disparate and the objects being

represented are in different domains. Not only could naive structure mapping not have

constructed this association without additional knowledge, but it is difficult to concep-
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tualise a representation in which the relationships of similarity and scale are expressed

identically. The two relationships are objectively different, but in the context of this asso-

ciation it is of potential benefit to explore what the world would look like if they weren’t.

Using IDM, our system is capable of mapping a pattern of typological relationships be-

tween figures in a painting to a pattern of topological relationships between figures in an

ironwork gate. This result demonstrates the possibility of inter-domain association using

Idiom given symbolic representations of both objects.

5 Comparing re-representation in analogy models

In addition to serving as a basis for developing models of computational analogy-making,

the IDM framework can serve as a lens through which the interpreting capabilities of

analogy-making systems can be described. The constituent processes of models of analogy

can themselves be analogously mapped to IDM’s perception, interpreting and mapping.

An analogy-making model can be described using IDM so long as it exhibits a mechanism

by which previously unmappable object representations can be transformed so as to

make them mappable. By re-framing other systems through this lens we can describe

commonalities in the way they transform representations despite the diversity of methods

by which they do so. The IDM framework asks six questions of an analogy-making model

(see Section 2), and we follow this line of questioning for three extant models and the

Idiom model described in this paper.

The three models used for comparison come from the three paradigms of computa-

tional analogy-making models in French (2002): the symbolic, the connectionist and the

hybrid. The canonical examples of each (according to French) are the Structure Map-

ping Engine (SME) (Falkenhainer et al., 1986, 1989), Analogical Mapping by Constraint

Satisfaction (ACME) (Holyoak and Thagard, 1989; Spellman and Holyoak, 1992), and

Copycat (Hofstadter, 1984; Hofstadter and Mitchell, 1992). However, the SME is a model

of analogical mapping only and does not incorporate any representation construction or

transformation. We compare an extension of it, Incremental Structure Mapping (I-SME)
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(Forbus et al., 1994) which incorporates a form of reinterpretation into the basic SME

model. The incremental nature of I-SME addresses the problem of cognitive plausibility

when problem-solvers are exposed to knowledge about potential analogues sequentially,

with new knowledge arriving after the mapping process has begun. I-SME adds new

knowledge to object representations during mapping, and decides in each case whether

to extend the existing mapping or construct a new and different one. We compare I-SME,

ACME, Copycat and our Idiom implementation through the lens of the IDM framework.

I-SME is a general theory of analogical mapping, and thus can map between any

symbolic representation, but the best-known implementation of it, the Minimal Analog-

ical Reasoning System (MARS) solves engineering problems given a worked example of

an analogous problem. This implementation of I-SME combines basic knowledge about

objects, incremental mapping and an equation solver to solve problems. It incrementally

extends its representations by generating candidate inferences, evaluating them, and in-

corporating the successful ones into its mapping.

ACME maps between symbolic representations of real-world concepts, and is able

to construct analogies like “Socrates is a midwife of ideas”. ACME operates on graph

representations of features and relationships, and constructs mappings by spreading ac-

tivation through that graph, with simultaneously active concepts being analogous. This

activation is guided by a set of constraints governing what kinds of properties should

be mapped. ACME adds excitatory and inhibitory connections between features to con-

strain mappings between those features to be similar in structure, similar in meaning,

and relevant to the current context.

Copycat finds analogical connections within the domain of letter strings, solving pro-

portional analogies of the form “abc→ abd, ijk →?”. Copycat has knowledge of concepts

relevant to the domain – such as “group of letters”, “identical letters” and “successive

letters” – in the form of a connectionist semantic network. Copycat builds representa-

tions of letter strings out of these concepts using a parallel representation construction

and mapping search process. Copycat’s search is affected by both top-down pressures

from the conceptual network and bottom-up pressures from the letter strings.
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Our implementation of the Idiom model (see Section 4.1) finds analogous patterns of

shapes within vector images drawn from ornamental design, architecture and art. Images

represented relationally are iteratively searched for mappings by a genetic algorithm and

transformed by an interpreting process driven by reinforcement learning. We demonstrate

that IDM framework is sufficiently general as to compare the mechanisms of each system.

The first question posed in the IDM framework is “What bounds the space of valid

associations constructible by mapping?”, Table 1. The mapping search spaces used by

I-SME, ACME, Copycat and Idiom all share a commonality: they map only between

features that are contextually identical. They differ in their representations, search

strategies, and definitions of “context”, but each will map patterns of matching features.

Copycat, I-SME and Idiom follow structure-mapping and map between relationships, not

features. ACME maps features but its process for doing so can be thought of as con-

textually equating the relationships between them as identicality, and thus can also be

thought of as mapping structures of relationships.

Defining the space of valid associations

I-SME ACME Copycat Idiom

Features can be as-
sociated when they
share relations.

Concepts within
the graph are
associated when
simultaneously
active.

Strings of letters
can be associated
when they share
representational
structure.

Features can be
associated between
shapes when there
is a shared pattern
of relationships.

Table 1: What bounds the space of valid associations constructible by mapping?

The second question posed in the IDM framework is “What causes an association to

be selected by mapping?”, Table 2. The four models can be divided into two categories:

those that implement transfer that those that do not. The models that include a transfer

component, I-SME and Copycat, terminate when they can successfully transfer knowledge

from the source to the target and solve the provided problem. ACME terminates based on

local maxima, by reaching a state where no further mapping can occur. Idiom terminates

based on a specified suitability criterion that is specified according to the problem domain.

The Idiom implementation presented in this paper uses a measure of quality derived from

the association structure (the mapping’s size in nodes).
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Selecting candidate associations

I-SME ACME Copycat Idiom

Successful asso-
ciations transfer
knowledge that
fulfills a goal.

An association is
selected when an
energy minimum is
reached.

An association is
selected when a so-
lution to to the
proportional prob-
lem can be gener-
ated.

Associations are
selected when the
quality measure
reaches a pre-
defined threshold.

Table 2: What causes an association to be selected by mapping?

The third question posed in the IDM framework is “What bounds the space of valid

transformations constructible by interpreting?”, Table 3. Three of the four systems,

ACME, Copycat and Idiom, implement transformation as contextual equivalency be-

tween relationships. They differ, however, in how and why these transformations are

generated. In ACME and Copycat relational equivalencies are enabled by pre-specified

connections between concepts, although in both this affects representations indirectly. In

ACME this enabling connection is in the form of constraints favouring certain mappings

over others, and in Copycat certain concepts are “slippage”-capable in specified circum-

stances. The connectionist nature of ACME means that these equivalencies are specified

in a distributed but deterministic fashion, while the hybrid connectionist/symbolic nature

of Copycat means that while equivalencies are symbolic but only affect representations

through distributed processes. In Idiom the interpreting process is symbolic and stochas-

tic as in Copycat, but all pairwise equivalencies are possible as in ACME.

Defining the space of possible transformations

I-SME ACME Copycat Idiom

Candidate infer-
ences are con-
structed that
influence the
next mapping
increment.

Constraints apply
pressure from con-
textually related
nodes to force
disparate nodes to
map.

Equates the mean-
ing of disparate
concepts, affecting
the trajectory of
representation
construction.

Theoretically any.
Implemented as
equivalency be-
tween pairs of
edge-labels in
prototype.

Table 3: What bounds the space of valid transformations constructible by interpreting?

I-SME differs from the other three systems in that transformation does not take the

form of contextual equivalency between features of the object representations. I-SME
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can receive new knowledge between mapping steps either from an external source like the

experimenter or through its own deduction or inference. These transformations do not

contextually treat objectively different properties as contextually similar, but instead rep-

resent an evolving objective knowledge base. For example, I-SME could be implemented

with a set of knowledge about cats (that they are kept as pets by humans, that they

have fur, etc) and use that to add knowledge to an object once it had established that

the object belonged to the class “cat”. Transforming between levels of representational

abstraction like this is not the same as contextual equivalency between objects – a cat is

not a pet only for the purposes of this mapping, it is always both a pet and a cat.

The fourth question posed in the IDM framework is “What causes a transformation

to be selected by the interpreting process?”, Table 4. Two of the four analogy-making

models, I-SME and Idiom, select transformations based on how they improve the associ-

ations they act on, while the other two, ACME and Copycat, use contextual influence.

I-SME’s selected transformations (the inferred attributes that extend its representations)

improve candidate associations based on progress towards the goal state, while Idiom’s

selected transformations improve candidate associations based on the measure of associa-

tion quality. Both I-SME and Idiom use syntactic properties of the object representations

to motivate transformations: the transformations that are generated make candidate as-

sociations stronger according to each system’s goal. As Idiom can construct any pairwise

equivalency between relationships this means it is driven by structural similarity within

object relationships – shared patterns of different relationships that can be equated by

transformations. I-SME, by contrast, is limited in its transformations by what it can de-

rive from existing knowledge using rules and inference, and cannot contextually change

the meaning of its representations, only add to them.

ACME and Copycat select their transformations using the effect of the current task

context. In ACME every node exerts influence – however small – on every other node’s

activation and thusly what it is analogous to. In Copycat representational elements

beget more like them, but there is also influence exerted by active concepts, and active

concepts spread their activation to similar concepts in the same way as ACME. Copycat’s
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Selecting candidate transformations

I-SME ACME Copycat Idiom

Successful trans-
formations bring
the agent closer to
its goal states.

Conceptual acti-
vation spreading
along constrained
relations de-
termines the
transformations
produced.

Pressures from
active representa-
tions (bottom-up)
and active con-
cepts (top-down)
affect what trans-
formations occur.

Selected transfor-
mations improve
the quality mea-
sure

q
−→. In the

prototype imple-
mentation this
means they enable
larger associations.

Table 4: What causes a transformation to be selected by the interpreting process?

transformations (referred to as “conceptual slippage”) occur only in the right combination

of conceptual activations, in contrast to ACME’s transformations which occur as the sole,

iterative mechanism by which analogies are constructed.

The fifth question posed in the IDM framework is “How do candidate transforma-

tions selected by interpreting affect mapping?”, Table 5. While the cause and scope of

their transformations are very different, I-SME and Idiom both use transformations that

directly change the representations being searched. This affects the search trajectory by

re-defining the problem space – what was once mappable may now not be, and vice versa.

Effects of candidate transformations on mapping

I-SME ACME Copycat Idiom

Mapping search
applies to trans-
formed objects
directly.

Mapping and In-
terpreting are not
separate – associ-
ating between two
features and trans-
forming them to be
equivalent is the
same operation.

Transforms the
meaning of nodes
in its conceptual
network, which
affect representa-
tion construction
and thus mapping
search.

Mapping search
applies to trans-
formed objects
directly.

Table 5: How do candidate transformations selected by interpreting affect mapping?

ACME and Copycat, while they both use spreading activation among conceptual

networks to trigger their transformations, have very different processes for how those

transformations affect mapping. In ACME the network of nodes and relationships be-

tween them is the only representational structure present, and transforming the meanings

of those nodes (expressed as the context of simultaneous activations) is both the mapping
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process and the interpreting one. This equivalence between transformation and mapping

reflects the core of the connectionist approach: “meaning” exists only in context, and thus

both transformations of meaning and solutions to problems are embedded in distributed

structures. While this may seem to violate a comparison of this system with the others

under the IDM framework, note that it is only the last two questions which are difficult

to answer in ACME, and their answering still proves informative.

The sixth and final question posed in the IDM framework is “How do candidate as-

sociations selected by mapping affect interpreting?”, Table 6. Each of the four systems

provides a very different answer to this question. In I-SME the rules of symbolic logic

apply – transformations can only occur when there is a clear logical precedent. In ACME,

again, the question does not have a clear meaning, as transformations and association

candidates are both expressed as conceptual activation patterns. In Copycat there are

indirect effects on transformation brought about by the current candidate associations:

existing representational fragments affect conceptual activation, and certain patterns of

conceptual activation trigger transformation. In Idiom the relationship is more direct:

candidate transformations are evaluated based on how they improve candidate associa-

tions, meaning that the evaluation of the former is contingent on the state of the latter.

Effects of candidate associations on interpreting

I-SME ACME Copycat Idiom

Candidate associ-
ations determine
which rules can
apply.

Mapping and In-
terpreting are not
separate – associ-
ating between two
features and trans-
forming them to be
equivalent is the
same operation.

Candidate associa-
tions influence con-
ceptual activation
and and thus can
bring about trans-
formations.

Candidate asso-
ciations are used
to evaluate trans-
formations, thus
affecting which
one(s) apply.

Table 6: How do candidate associations selected by mapping affect interpreting?

This comparison illustrates that the IDM framework serves as a useful lens through

which to view analogy-making models and compare the ways by which their constituent

processes interact. IDM is an effective comparative tool for models of analogy that have

historically been categorised as divergent along the “symbolic” – “hybrid” – “connection-

30



ist” axis. The comparison also shows that Idiom occupies a niche distinct from previous

models of analogy-making: it combines the structure mapping approach of I-SME with

the contextual re-representation of Copycat while retaining the flexibility of ACME.

6 Conclusion

The way representations change during mapping is a critical component of computa-

tional models of analogy. We have developed IDM, a general framework for describing

representational transformation within analogy-making. IDM focusses on the way iter-

ative reinterpreting occurs in parallel with the mapping process, and how this process

mutually affects and is affected by mapping. This general framework has the capacity

to investigate how other models of analogy-making have incorporated these interactions.

By representing other analogy-making models in terms of these mechanisms we are able

to elucidate the similarities and differences in the way their object representations change

during mapping. We argue that this framework is particularly apt for analogy in computa-

tional design, as the situated, constructive and emergent nature of design representations

(Gero, 1998) requires an approach that supports representational fluidity.

IDM provides a unifying descriptive architecture for comparing the processes used

by diverse computational analogy-making models. Reviews of computational analogy-

making spanning the last 25 years (Hall, 1989; French, 2002; Gentner and Forbus, 2011)

have identified a number of typicalities in extant models. These include typical processes

in models of analogy (including retrieval, re-representation, mapping, transfer, and eval-

uation), typical components of the representations used in analogy (such as labelled

relational structures) and typologies of model architectures (connectionist, symbolic and

hybrid). The IDM framework introduces an additional, general, way to describe similar-

ities among analogy-making models: their interpretive capacity and its catalyst(s). The

IDM framework then poses questions about the representational processes encapsulated

in the model and their interactions with mapping. The answers to these questions provide

new insight into how models previously thought of as theoretically incompatible – such
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as connectionist ACME and symbolic I-SME – are alike.

We have developed a computational model of the mapping component of analogy-

making, Idiom, that instantiates the IDM framework. Idiom is specifically designed

around the iterative and parallel interactions between re-representation and the mapping

process, and serves as a proof-of-concept of the IDM framework. Idiom, and the prototyp-

ical implementation of it in the domain of ornamental design, demonstrate that a focus

on the changes in representation that occur during mapping can lead to an expanded

capacity for mapping without requiring extensive or specially-built representations. Id-

iom leverages structural similarities that underly object representations to transform the

relational structures and enable mapping. Two objects that may not share any relations

may share a pattern of how those relations occur between their features, and it is from

this syntactic level of commonality that Idiom derives its transformations.

We evaluate our model by its generative capability: it can construct associations which

previous structure-mapping systems could not construct from the same representations.

This capability stems from the parallel interactive interpreting and mapping of the IDM

framework. The model is able to construct a variety of associations from the same pair

of objects by using different transformations, and able to construct associations between

relationships regardless of their similarity, permitting cross-domain analogy. We make no

claims as to the quality of the associations produced (beyond the internal evaluation by

Idiom of the number of features they can connect), nor of their utility for a particular

task: Idiom is a model only of the mapping component of analogy-making and produces

associations in the absence of transfer. Idiom and IDM framework provide capabilities

that structure-mapping systems did not previously possess. Their extension to a full

model of analogy including transfer and evaluation is an area of active research.

To illustrate the capabilities of both the IDM framework and Idiom, we compare our

implementation to three analogy-making models, I-SME, ACME and Copycat. Symbolic

models like I-SME typically utilise logical inference as the mechanism for representa-

tional change when transformation during mapping is possible at all. Idiom’s approach

offers more flexibility than I-SME approach in both the construction and selection of
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transformations: new transformations can be constructed from syntactical regularities

in object representations, and the iterative stochastic transformation evaluation process

is less constrained than inference (at least in the absence of new external knowledge).

The approaches to transformation used by ACME and Copycat are revealed by the IDM

reframing as diametrically opposed: While both model transformations as contextual

equivalency, Copycat has few potential transformations (“slippages”) while ACME al-

lows any pair of features to transform. Conversely, Copycat’s slippages occur only after

specific representational and conceptual states have been reached, while ACME’s transfor-

mations occur constantly as a result of aggregate pressure from the entire representational

structure. Idiom, by comparison, permits the same space of possible transformations as

ACME (as in theory any two relations can be equated) while offering guidance in selecting

transformations as in Copycat (as transformations are only constructed in the context of

specific, favourable representational states). This shows the strength of the iterative and

parallel approach to interpreting and mapping: everything can in theory be mapped, but

local conditions guide individual decisions about which transformations to apply.

The second strength of the IDM framework is in the centrality of the interactions

between mapping and interpreting. Interpreting in Idiom affects mapping by transform-

ing the object representations directly, changing the trajectory of the search as in I-SME

and ACME. Mapping in Idiom affects interpreting by driving what transformations are

constructed – the interpreting process explores how to improve extant candidate associa-

tions in the same way that in Copycat conceptual slippage occurs when context suggests

it would be useful. Unlike Copycat Idiom is domain-general, and its transformations are

syntactically derived, obviating the need to specify a domain- and context-specific set of

potential slippages. The IDM approach allows mapping and interpreting to iteratively

influence each other in a domain-general model of analogy.

This comparison demonstrates the descriptive power of the IDM framework and high-

lights that representational variation during mapping is central to analogy. Idiom exhibits

capabilities previously only observed separately in models of analogy-making – specifi-

cally the ability to contextually guide the selection of a representational change and the
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ability for a large space of possible representational changes to be applied. These charac-

teristics, which are made possible by Idiom’s ability to learn new transformations based

on the structure rather than content of the objects it is mapping, make Idiom particularly

suited to the representationally dynamic domain of analogical reasoning in design.

References

Barnden, J. A. and Holyoak, K. J. (1994). Advances in Connectionist and Neural Com-

putation Theory: Analogy, Methaphor, and Reminding. Ablex Publishing Corporation.

Bhatta, S. R. and Goel, A. (1997). Learning generic mechanisms for innovative strategies

in adaptive design. The Journal of the Learning Sciences, 6(4):367–396.

Chalmers, D. J., French, R. M., and Hofstadter, D. R. (1992). High-level perception,

representation, and analogy: A critique of artificial intelligence methodology. Journal

of Experimental & Theoretical Artificial Intelligence, 4(3):185–211.

Clancey, W. J. (1997). Situated cognition: On human knowledge and computer represen-

tations. Cambridge University Press.

Cliff, S. (1998). The English archive of design and decoration. Thames & Hudson (Lon-

don).

Cottingham, L. N. (1824). The Smith and Founder’s Director: Containing a Series of

Designs and Patterns for Ornamental Iron and Brass Work. Hullmandel.

Cross, A. D., Wilson, R. C., and Hancock, E. R. (1996). Genetic search for structural

matching. In Computer VisionECCV’96, pages 514–525. Springer.

Davies, J. and Goel, A. K. (2001). Visual analogy in problem solving. In Proceedings

of the 17th international joint conference on Artificial intelligence-Volume 1, pages

377–382. Morgan Kaufmann Publishers Inc.

Davies, J. and Goel, A. K. (2003). Representation issues in visual analogy. In Proc. 25th

Annual Conf. Cognitive Science Society. Lawrence Eribaum Associations.

34



Davies, J., Goel, A. K., and Nersessian, N. J. (2003). Visual re-representation in creative

analogies. In The Third Workshop on Creative Systems. International Joint Conference

on Artificial Intelligence, pages 1–12.

Detterman, D. K. and Sternberg, R. J. (1993). Transfer on trial: Intelligence, cognition,

and instruction. Ablex Publishing.

Doumas, L. A., Hummel, J. E., and Sandhofer, C. M. (2008). A theory of the discovery

and predication of relational concepts. Psychological Review, 115(1):1–43.

Evans, T. (1964). A heuristic program to solve geometric-analogy problems. In Proceed-

ings of the 1964 Spring Joint Computer Conference, pages 327–338. ACM Press.

Falkenhainer, B. (1990). Analogical interpretation in context. In Proceedings of the

Twelfth Annual Conference of the Cognitive Science Society, pages 69–76.

Falkenhainer, B., Forbus, K. D., and Gentner, D. (1986). The structure-mapping engine.

Department of Computer Science, University of Illinois at Urbana-Champaign.

Falkenhainer, B., Forbus, K. D., and Gentner, D. (1989). The structure-mapping engine:

Algorithm and examples. Artificial Intelligence, 41(1):1–63.

Fauconnier, G. and Turner, M. (2003). The Way We Think: Conceptual Blending and

the Mind’s Hidden Complexities. Basic Books.

Forbus, K., Usher, J., Lovett, A., Lockwood, K., and Wetzel, J. (2011). Cogsketch: Sketch

understanding for cognitive science research and for education. Topics in Cognitive

Science, 3(4):648–666.

Forbus, K. D., Ferguson, R. W., and Gentner, D. (1994). Incremental structure-mapping.

In Proceedings of the sixteenth annual conference of the Cognitive Science Society, pages

313–318. Lawrence Erlbaum Associates, Inc Hillsdale, NJ.

Forbus, K. D., Gentner, D., and Law, K. (1995). MAC/FAC: A model of similarity-based

retrieval. Cognitive Science, 19(2):141–205.

35



French, R. (2002). The computational modeling of analogy-making. Trends in Cognitive

Sciences, 6(5):200–205.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: a guide to NP-

Completeness. WH Freeman New York.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive

Science, 7:155–170.

Gentner, D. and Forbus, K. D. (2011). Computational models of analogy. Wiley Inter-

disciplinary Reviews: Cognitive Science, 2(3):266–276.

Gentner, D. and Holyoak, K. J. (1997). Reasoning and learning by analogy: Introduction.

American Psychologist, 52(1):32.

Gero, J. S. (1998). Conceptual designing as a sequence of situated acts. In Artificial

Intelligence in Structural Engineering, pages 165–177. Springer.

Gick, M. L. and Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology,

12(3):306–355.

Gick, M. L. and Holyoak, K. J. (1983). Schema induction and analogical transfer. Cog-

nitive Psychology, 15(1):1–38.

Griffith, T. W., Nersessian, N. J., and Goel, A. (2000). Function-follows-form transfor-

mations in scientific problem solving. In 22nd Annual Conf. of the Cognitive Science

Society, pages 196–201.

Griffith, T. W., Nersessian, N. J., and Goel, A. K. (1996). The role of generic models

in conceptual change. In Proceedings of the 18th Annual Conference of the Cognitive

Science Society, pages 312–317.

Hahn, U., Chater, N., and Richardson, L. B. (2003). Similarity as transformation. Cog-

nition, 87(1):1–32.

36



Hall, R. P. (1989). Computational approaches to analogical reasoning: A comparative

analysis. Artificial Intelligence, 39(1):39–120.

Harpaz-Itay, Y., Kaniel, S., and Ben-Amram, E. (2006). Analogy construction versus

analogy solution, and their influence on transfer. Learning and Instruction, 16(6):583–

591.

Hodgetts, C. J., Hahn, U., and Chater, N. (2009). Transformation and alignment in

similarity. Cognition, 113(1):62–79.

Hofstadter, D. (1984). The copycat project: An experiment in nondeterminism and

creative analogies. MIT Artificial Intelligence Laboratory AI Memo 755.

Hofstadter, D. R. (2008). Fluid Concepts and Creative Analogies: Computer Models of

the Fundamental Mechanisms of Thought. Basic Books.

Hofstadter, D. R. and Mitchell, M. (1992). An overview of the Copycat project. In

Holyoak, K. and Barnden, J., editors, Connectionist Approaches to Analogy, Metaphor,

and Case-Based Reasoning. Ablex.

Holyoak, K. J. (2012). Analogy and relational reasoning. The Oxford Handbook of Think-

ing and Reasoning, pages 234–259.

Holyoak, K. J., Novick, L. R., and Melz, E. R. (1994). Component Processes in Analogical

Transfer: Mapping, Pattern Completion, and Adaptation. Ablex Publishing.

Holyoak, K. J. and Thagard, P. (1989). Analogical mapping by constraint satisfaction.

Cognitive Science, 13(3):295–355.

Humbert, C. (1970). Ornamental Design: Europe, Africa, Asia, the Americas, Oceania:

A Source Book With 1000 Illustrations. Thames & Hudson (London).

Kann, V. (1992). On the approximability of NP-complete optimization problems. PhD

thesis, Royal Institute of Technology Stockholm.

Koestler, A. (1967). The Act of Creation. Penguin Books.

37



Kokinov, B. and Petrov, A. (2001). Integrating memory and reasoning in analogy-making:

The AMBR model. The Analogical Mind. Perspectives from Cognitive Science, Cam-

bridge Mass.

Lakoff, G. and Johnson, M. (2003). Metaphors We Live By. University Of Chicago Press,

2nd edition.

Lovett, A., Gentner, D., Forbus, K., and Sagi, E. (2009a). Using analogical mapping to

simulate time-course phenomena in perceptual similarity. Cognitive Systems Research,

10(3):216–228.

Lovett, A., Tomai, E., Forbus, K., and Usher, J. (2009b). Solving geometric analogy

problems through two-stage analogical mapping. Cognitive Science, 33(7):1192–1231.

Mahon, B. Z. and Caramazza, A. (2008). A critical look at the embodied cognition

hypothesis and a new proposal for grounding conceptual content. Journal of Physiology

(Paris), 102(1):59–70.

McDermott, J. (1979). Learning to use analogies. In Proceedings of the 6th International

Joint Conference on Artificial Intelligence - Volume 1, pages 568–576, San Francisco,

CA, USA. Morgan Kaufmann Publishers Inc.

Penn, D. C., Holyoak, K. J., and Povinelli, D. J. (2008). Darwin’s mistake: Explaining the

discontinuity between human and nonhuman minds. Behavioral and Brain Sciences,

31(2):109–130.

Petkov, G., Vankov, I., and Kokinov, B. (2011). Unifying deduction, induction, and

analogy by the AMBR model. In Proc. 33rd Annu. Conf. Cogn. Sci. Soc. Erlbaum,

Hillsdale.

Qian, L. and Gero, J. S. (1996). Function-behavior-structure paths and their role in

analogy-based design. AIEDAM, 10(4):289–312.

Ramscar, M. and Yarlett, D. (2003). Semantic grounding in models of analogy: an

environmental approach. Cognitive Science, 27(1):41–71.

38



Robertson, I. (2000). Imitative problem solving: Why transfer of learning often fails to

occur. Instructional Science, 28(4):263–289.

Schacter, D. L., Norman, K. A., and Koutstaal, W. (2000). The cognitive neuroscience

of constructive memory. False-memory Creation in Children and Adults: Theory, Re-

search, and Implications, pages 129–168.

Sowa, J. F. and Majumdar, A. K. (2003). Analogical reasoning. In Conceptual Structures

for Knowledge Creation and Communication, pages 16–36. Springer.

Spellman, B. A. and Holyoak, K. J. (1992). If Saddam is Hitler then who is George Bush?

Analogical mapping between systems of social roles. Journal of Personality and Social

Psychology, 62(6):913.

Tan, K.-L., Ooi, B. C., and Thiang, L. F. (2003). Retrieving similar shapes effectively

and efficiently. Multimedia Tools and Applications, 19(2):111–134.

Turney, P. D. (2008). The latent relation mapping engine: Algorithm and experiments.

J. Artif. Intell. Res.(JAIR), 33:615–655.

Visser, W. (1996). Two functions of analogical reasoning in design: a cognitive-psychology

approach. Design Studies, 17(4):417–434.

Wang, T. and Zhou, J. (1997). Emcss: A new method for maximal common substructure

search. Journal of Chemical Information and Computer Sciences, 37(5):828–834.

Wolstencroft, J. (1989). Restructuring, reminding and repair: What’s missing from mod-

els of anology. AI Communications, 2(2):58–71.

Yan, J., Forbus, K. D., and Gentner, D. (2003). A theory of rerepresentation in analogical

matching. In Proceedings of the 25th Annual Meeting of the Cognitive Science Society.

39


