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ABSTRACT 
In this paper, we describe a novel approach to developing 
computational models of creativity that supports the multiple 
approaches to the study of artificial creative systems. The artificial 
creativity approach to the development of computational models 
of creative systems is described with reference to 
Csikszentmihalyi’s systems view of creativity. Some interesting 
results from studies using an early implementation of an 
artificially creative system, The Digital Clockwork Muse, are 
presented. The different studies show how the artificial creativity 
approach supports the study of creativity from a variety of 
standpoints that mirror the disciplines that study human creativity. 
The use of artificial creativity allows these different studies to be 
conveniently conducted on the same computational model and 
integrated in to a more complete picture of the creative process. 

Categories & Subject Descriptors: I.6.3 [Simulation and 
Modeling]: Applications---design computing; I.6.5. [Simulation 
and Modeling]: Model Development---multi-agent systems; J.5 
[Arts and Humanities]: Fine Arts---evolutionary art. 

General Terms: Experimentation. 

Keywords: Creativity studies, curiosity, multi-agent simulation. 

INTRODUCTION 
Artificial creativity [12] is a computational approach to studying 
creative behaviour using closed-world simulations of social 
creative systems. In a similar way to Artificial Life, the aim of 
artificial creativity is to provide insights into the nature of 
creativity-as-it-is by studying creativity-as-it-could-be. In other 
words, it is the comparative study of creativity as it is found in 
human societies against creativity as it can be computationally 
modelled in artificial societies of agents. 

The artificial creativity approach allows researchers to study 
aspects of creative behaviour at different levels of the creative 
system within a single model. Artificial creativity systems provide 
closed-world simulations of creative systems that allow an 
experimenter to control the details of the simulation that affect 

production, communication and recording of ideas and artefacts. 
This ability permits the study of many configurations not possible 
in the real world.  

As with artificial life, some of the most interesting possibilities 
supported by artificial creativity systems come from the ease with 
which researchers can re-run a simulation with different starting 
conditions or parameters to study how the course of events are 
changed. These types of experiments are impossible to do in the 
real world and can potentially tell us a great deal about the nature 
of creativity. 

Artificial creativity is compatible with several different 
approaches to the study of human creativity, e.g. cognitive 
science, sociology and history. Mapping these different 
approaches to the computational realm so that they can be applied 
to the study of artificially creative systems provides a number of 
important ways to compare and contrast artificial and human 
creative systems. The example studies given in this paper give an 
indication of some of the studies that may be possible in future 
models of artificial creativity. 

The following section provides some background regarding the 
study of creativity in human creative systems. The artificial 
creativity approach is then described and some results are 
presented of studies of artificial creativity using different 
approaches related to the study of creativity in human creative 
systems. 

CREATIVITY 
The apparent need to define the nature of creativity has haunted 
most attempts to develop models and theories of the processes 
involved. The difficulty of this task is clear from the number of 
definitions that can be found in the literature – Taylor [14] gives 
some 50 definitions. Some researchers have concluded that trying 
to develop a single definition of creativity is a fruitless task and 
have looked for ways to conduct their research without the need 
for a formal definition. 

Gardner [4] accepts the judgement of historical record as 
sufficient grounds to determine the creativity of individuals across 
multiple domains. He argues that this is the only reasonable way 
to judge creativity while admitting that it is flawed because it 
ignores the creativity of individuals that fails to come to the 
attention of a wide audience. As such, Gardner’s approach to 
determining the creativity of an individual is biased towards those 
that gain a certain level of fame for their achievements. 

Boden [2] provides two definitions of creativity, psychological 
creativity (P-creativity) and historical creativity (H-creativity). 
Within this framework Boden admits that the term creativity has 
two important meanings in the research community; the first is a 
label used to identify the processes employed by a creative 
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individual, the second is a title awarded by society to honour the 
importance of creative works or creative individuals. 

In “The Clockwork Muse”  [9] Martindale presented an extensive 
investigation into the role that individual novelty-seeking 
behaviour played in literature, music, visual arts and architecture. 
He concluded that the search for novelty exerts a significant force 
on the development of styles. Martindale illustrated the influence 
of the search for novelty by individuals in a thought experiment 
where he introduced “The Law of Novelty” . The Law of Novelty 
forbids the repetition of word or deed and punishes offenders by 
ostracising them. Martindale argued that The Law of Novelty was 
merely a magnification of the reality in creative fields. Some of 
the consequences of the search for novelty are that individuals 
that do not innovate appropriately will be ignored in the long run 
and that the complexity of any one style will increase over time to 
support the increasing need for novelty. 

Csikszentmihalyi’s Systems View of Creativity 
Csikszentmihalyi [3] developed his systems view of creativity 
after turning his attention away from the question “What is 
creativity?”  and instead asking, “Where is creativity?”  The 
systems view of creativity was developed as a model of the 
dynamic behaviour of creative systems. Creative systems extend 
beyond any particular creative individual and include the socio-
cultural context within which the individual works. 
Csikszentmihalyi identified three important components of a 
creative system; firstly there is the individual, secondly there is a 
social, or interactive, component called the field, and thirdly there 
is a cultural, or symbolic, component called the domain. A map of 
the interactions between these components is given in Figure 1.  
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Figure 1. Csikszentmihalyi's systems view of creativity. 

 

An individual’s role in the systems view is to bring about some 
transformation of the knowledge held in the domain. The field is a 
set of social institutions that selects from the variations produced 
by individuals those that are worth preserving. The domain is a 
repository of knowledge held by the culture that preserves ideas or 
forms selected by the field. 

In a typical cycle, an individual takes some information provided 
by the culture and transforms it, if the transformation is deemed 
valuable by society, it will be included in the domain of 
knowledge held by the culture, thus providing a new starting point 
for the next cycle of transformation and evaluation. In 

Csikszentmihalyi’s view, creativity is not to be found in any one 
of these elements, but in the interactions between them. 

Approaches to Studying Creativity 
Traditional approaches to studying creativity have tended to focus 
upon one of these components and acknowledge the other 
components as context to their subject. This is a natural 
consequence of the specialised nature of the studies involved, 
only experts in the disciplines involved can conduct the 
experiments and few are experts in more than one approach to the 
study of creativity. For example, cognitive studies have naturally 
focussed upon the individual and paid less attention, if any, to the 
social and cultural contexts that influence the creative individual 
at work. Similarly, sociological studies of scientific or artistic 
fields provide insights into the nature of the field but rarely 
attempt to link these back to the cognitive processes of the 
individuals. Historical studies of particular creative periods rely 
on the records and artefacts kept by a domain and have little 
access to the social and cognitive processes that help produce 
them, other than the records of social structures and the noted 
findings of earlier researchers. The components of interest in 
some of the different approaches to studying of creativity are 
summarised in Table 1. 

 

Table 1. Different approaches to studying creativity and their 
associated component in the systems view of creativity. 

 Individual Field Domain 

Approaches to 
studying 
creativity 

Cognitive science 

Psychology 

Psychometric 

Sociology 

Anthropology 

 

History 

Historiometric 

Philosophy 

 

ARTIFICIAL CREATIVITY 
Artificial creativity attempts to provide a methodology for 
studying all three components of creative systems using 
computational models in much the same way that artificial 
intelligence attempts to provide insights about cognitive processes 
and artificial life attempts to further our knowledge of biological 
systems. As such it is concerned with the development of models 
of creative systems as defined by Csikszentmihalyi rather than the 
development of cognitive models as it more often the case in 
artificial intelligence. The essential requirements of a 
computational model of artificial creativity are: 

 

• The model contains agents situated in a cultural environment. 

• No agent that can direct the behaviour of all the other agents. 

• There are no rules that dictate global behaviour. 

• Agents interact to exchange artefacts and evaluations. 

• Agents can access cultural symbols from the environment. 

• Agents evaluate the creativity of artefacts and other agents. 

 

Many of the requirements for artificial creativity are similar to 
those for computational models of artificial life [7] with the 
appropriate substitution of a physical environment with a cultural 
one. The exception is the final requirement of artificial creativity: 
all agents must be able to evaluate the creativity of artefacts and 
other agents. No corresponding rule exists in models of artificial 
life and this is the most important difference between artificial 



creativity models and other multi-agent simulations of social 
processes. The independence of creativity judgements required of 
agents within an artificial creativity simulation is one of the key 
aspects of these models that allows them to model interesting 
features of creative systems. As a consequence of the 
requirements of artificial creativity social judgements of creativity 
emerge from the interactions of individuals rather than being 
dictated by global rules or from outside the simulation by a human 
experimenter. 

To illustrate the approach, consider how one would model a 
society of artists. First, we would define a repertoire of behaviours 
for different artistic agents and create lots of these agents. We 
would then start a simulation run by specifying some initial social 
configuration of the agents within a simulated cultural 
environment. From this point onwards the behaviour of the 
system would depend entirely on the interactions between 
different agents and the interactions between the agents and their 
cultural environment. Importantly, there would be no single agent 
that could enforce a definition of creativity by controlling the 
behaviour of all of the other agents. In addition, there would be no 
rules in the agents or in the environment that would define a 
global definition of creativity. The notions of whom and what are 
creative held by the society would emerge from the multiple 
notions of creativity held by the individual agents. 

The Importance of Emergence 
The requirements of artificial creativity are designed to model the 
emergence of phenomena in societies of agents consistent with 
creativity in human society. Emergence is an important feature of 
artificial creativity systems, where phenomena at a certain level 
arise from interactions at lower levels. In artificial creativity, the 
socio-cultural evaluations of whom and what are creative are 
emergent phenomena; no individual can dictate the collective 
evaluations of whom and what are creative, they can only try to 
influence other individuals by exposing them to their products and 
their personal evaluations. 

In Boden’s terms we might be tempted to say that H-creativity is 
emergent whereas P-creativity is not because the processes that 
implement P-creativity test are fixed. However, in the artificial 
creativity system described later the interaction between agents 
and the continual learning of the agents through exposure to new 
artefacts mean that what an agent considers to be P-creative is an 
emergent property of the whole system. An individual embedded 
within an Artificial Creativity system is affected by its socio-
cultural context such that it will not produce the same P-creative 
products as it would in isolation. Hence, both H-creativity and P-
creativity are considered emergent properties of creative systems. 

THE DIGITAL CLOCKWORK MUSE 
The Digital Clockwork Muse is an artificial creativity system 
developed to explore the role that an individual’s search for 
novelty plays in socially situated creative systems. The Digital 
Clockwork Muse consists of multiple agents within a single field 
conducting searches for interesting and potentially creative 
“genetic artworks”  [16]. An example genetic artwork is illustrated 
in Figure 2, this artwork was evolved by a human user as part of 
the International Interactive Genetic Art project, for more 
information on this project see Whitbrock and Reilly [16]. 

Each agent is equipped with an evolutionary art system to allow it 
to generate genetic artworks and can communicate with one other 
agent, chosen at random, on each time step. Artefacts 
communicated between agents that are considered interesting by 

the peers of its creator are added to the domain as creative 
artworks. Individuals that produce artworks that are considered 
creative by other agents are rewarded with “creativity credit” . 

 

 

Figure 2. An example of a genetic artwork. 

 

More detailed and technical accounts of The Digital Clockwork 
Muse can be found elsewhere [10] the remainder of this document 
will focus on how the artificial creativity model allows different 
approaches to the study of creative behaviour during simulation 
runs. 

CURIOSITY, CLIQUES AND COMPLEXITY 
The Digital Clockwork Muse provides opportunities to study the 
effects of the search for novelty on artificial creativity at the level 
of the individual, the field and the domain. These studies are 
roughly equivalent to the cognitive, sociological and historical 
studies that are familiar from studies of human creativity and each 
provide different insights into the nature of the creative processes 
implemented. 

Curious Individuals 
Individual agents in The Digital Clockwork Muse had to be given 
the ability to judge the potential creativity of artworks as they 
were produced. To achieve this they needed to be able to 
independently assess the novelty of an artwork as they 
encountered it. In addition, the agents needed to be able to use 
these assessments to search for more novel artworks. 

Curious design agents [11] were used to model the novelty-
seeking behaviour required for individuals in The Digital 
Clockwork Muse. A curious design agent embodies a model of 
curiosity that uses a neural network called a novelty detector. A 
novelty detector can determine the novelty of a new input with 
respect to all of its previous inputs as a function of the errors 
generated when it attempts to classify the new input. Using a 
novelty detector, curious design agents are able to determine the 
novelty of new artworks as they are produced. 

A 32x32-pixel image of each genetic artwork is produced for 
analysis and categorisation in order to determine its novelty. 
Although this is a low-resolution image it is still large enough to 
allow fairly complex artworks to be evolved. A combination of a 
Laplacian edge-detector and a fixed intensity threshold function 
were used to extract a binary image of the predominant edges in 
an artwork. A Self-Organising Map (SOM) containing a lattice of 
6x6 map neurons is used as the basis for a novelty detector 
providing a memory 36 image prototypes. 

The novelty of each new image is measured as the distance 
between it and the nearest matching prototype. The distance is 



defined as the Euclidean distance between the vectors 
representing the new image and the closest matching prototype in 
the 1024 dimensional input space.  The novelty values reported in 
the remainder of this section are the raw novelty values, i.e. the 
values of output by the best matching neuron of the neural 
network. For the size of image used these values range between 
N=0 and N=32, with N=0 being an exact match and N=32 being a 
complete mismatch. 

The model of curiosity used by the curious design agents in The 
Digital Clockwork Muse also incorporates a “hedonic function”  
that transforms novelty into a measure of interestingness. The 
hedonic functions used in The Digital Clockwork Muse are based 
on the Wundt Curve that Berlyne [1] used as a model for the 
typical reactions that animals and humans display in the presence 
of novel situations. The Wundt Curve is illustrated in Figure 3 as 
the combination of a reward and punishment functions. 

Using Wundt Curve hedonic functions the curious design agents 
in The Digital Clockwork Muse all favour artworks that are 
similar-yet-different to those that have been seen before, however, 
the agents differ in how similar a new artwork must be for it to be 
considered highly interesting and therefore potentially creative. 
The preferred novelty of each agent is expressed as a value N that 
indicates the amount of novelty associated with peak interest in 
the Wundt Curve. In The Digital Clockwork Muse, N ranges from 
0 to 32; this is equal to the range of the potential classification 
error generated by the novelty detectors used. 
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Figure 3. The Wundt Curve: the hedonic function used to 
calculate interestingness. 

The Law of Novelty 
We investigated the effects of the search for novelty, by producing 
agents with different hedonic functions. The aim was to show that 
agents are not recognised as creative when they fail to innovate 
inappropriately. Agents can innovate inappropriately either by 
producing “boring”  images that are too similar to ones previously 
experienced by other agents, or by producing “ radical”  images 
that are too different for other agents to appreciate. 

We have simulated both types of inappropriate innovation in a 
single simulation. For this experiment we created a group of 
agents most of whom, agents 0-9, shared the same hedonic 
function, i.e. the same preference for average novelty (N=11). 
Two of the agents have quite different novelty preferences. One, 
agent 10, has a preference for low amounts of novelty (N=3) and 
the other, agent 11, has a preference for high amounts of novelty 
(N=19). Agents with a lower novelty preference tend to innovate 
at a slower rate than those with a higher hedonic preference. The 
results of the simulation are presented in Table 2. 

 

Table 2. The attributed creativity for a group of agents with 
different preferences for novelty. 

Agent 

ID 

Preferred 

Novelty 

Attributed 

Creativity 

0 N=11 5.43 

1 N=11 4.49 

2 N=11 4.50 

3 N=11 3.60 

4 N=11 4.48 

5 N=11 1.82 

6 N=11 6.32 

7 N=11 8.93 

8 N=11 10.72 

9 N=11 5.39 

10 N=3 0.0 

11 N=19 0.0 

 

Figure 4 shows how the network of communication links that has 
developed between agents that communicate artworks and 
evaluations on a regular basis excludes the two agents with 
different hedonic functions. In the screenshots of the running 
simulation the squares represent agents; the images in each square 
shows the currently selected genetic artwork for that agent, the 
number above each agent shows its attributed creativity, and the 
lines between agents indicate the number of rewarded 
communications between pairs of agents. 

 

 

 

Figure 4. Screenshot of a simulation demonstrating the 
emergence of the Law of Novelty. 

The results show the agents with the same preference for novelty 
to be somewhat creative according to their peers, with an average 
attributed creativity of 5.57. However, neither agent 10, with a 
preference for low amounts of novelty, nor agent 11, with a 
preference for high degrees of novelty, received any credit for 
their artworks. Consequently none of the artworks produced by 
these agents were saved in the domain for future generations. 
When these agents expired nothing remained in the system of 
their efforts. 



The results show that while an agent must innovate to be 
considered creative, it must do so at a pace that matches other 
agents to achieve recognition. The agent with a preference for 
high levels of novelty and hence rapid innovation was just as 
unsuccessful in gaining recognition as the agent with a low 
novelty threshold that innovated too slowly. 

To better understand the effects of an agent having a different 
hedonic function to the majority of agents in a population a series 
of similar simulation runs were performed where the difference 
between the majority preference for novelty and the two renegade 
agents is varied from 8, as in the current experiments giving N=3 
and N=19, and 1, by giving the two agents hedonic functions 
favouring N=10 and N=12. The attributed creativity to the agents 
favouring high and low levels of novelty are shown in Figure 5. 
The figures plotted against the hedonic are the creativity attributed 
to an agent relative to the average creativity of the majority of 
agents that share the same hedonic function. 
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Figure 5. Relative creativity for a range of conservative and 

radical agents over a range of hedonic values. 

 

Figure 5 shows that attributed creativity varies non-linearly with 
the difference between an agent’s preference for novelty and the 
majority. It also shows a slight preference for the works of the 
conservative agent over the radical one. 

The results of this experiment appear to confirm Martindale’s 
hypothesis generalises to the case where works that are very 
similar to ones previously experienced are ignored just as much as 
those that are exact replicas. To avoid being ignored an agent 
must produce some significant novelty that sets a work apart from 
previous examples. 

The results also indicate that while an agent must produce novelty 
to be considered creative, it must do so at a pace that matches its 
audience. There is no advantage in producing many highly novel 
works if the audience cannot appreciate them. In the first run of 
the experiment, the agent with a preference for high levels of 
novelty and hence rapid innovation was just as unsuccessful in 
gaining recognition as the agent with a low novelty threshold that 
did not innovate. Indeed, it appears from the series of experiments 
shown in Figure 5 that erring on the side of caution may be more 
beneficial that innovating too quickly but more work needs to be 
done to confirm this experimentally. 

The study of the individual in The Digital Clockwork Muse is 
similar in several ways to the studies of creative humans 
conducted by cognitive scientists, psychologist, and 
psychometricians. The design of the individuals follows the 
traditional approach taken in cognitive science and artificial 
intelligence of identifying potentially important cognitive 
functions, in this case novelty detection, interestingness 

judgement and curiosity, and then implementing these within a 
computational model. 

The validity of a computational model of cognitive processes is 
often tested by comparing the behaviour of the model against 
observations of human subjects. In this case, the validity of the 
model was tested by comparing the behaviour of a curious design 
agent against observations about individuals engaged in creative 
fields, i.e. Martindale’s observations of the importance of the 
search for novelty. 

Continuing the investigation into the relationship between 
attributed creativity and the deviation of an individual’s preferred 
novelty from the mode this study provided some quantitative 
results into the relationship between an agent’s curious 
“personality”  and their creativity, reminiscent of psychometric 
approach to the study of creative individuals. 

Fields of Cliques 
We have also investigated the behaviour of groups of agents with 
different hedonic functions. To do this we created a group of 10 
agents, half of them had a hedonic function that favoured novelty 
N=6 and the other five agents favoured novelty values close to 
N=15. Figure 6 shows the payments of creativity credit between 
the agents in recognition of interesting artworks sent by the 
agents. 
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Figure 6. The total number of messages carrying credit for being 

creative between the agents of the simulation. 

 

Two areas of frequent communication can be seen in the matrix of 
payment messages shown in Figure 6. The agents with the same 
hedonic function frequently send credit for interesting artworks 
amongst themselves but rarely send them to agents with a 
different hedonic function. There are a large number of credit 
messages between agents 0-4 and agents 5-9, but only one 
payment between the two groups – agent 4 credits agent 5 for a 
single interesting artwork. 

The result of putting collections of agents with different hedonic 
functions in the same group appears to be the formation of 
cliques: groups of agents that communicate credit frequently 
amongst themselves but rarely acknowledge the creativity of 
agents outside the clique. As a consequence of the lack of 
communication between the groups the style of artworks produced 
by the two cliques also remains distinct. 

Communication between cliques is rare but it is an important 
aspect of creative social behaviour. Communication between 
cliques occurs when two individuals in the different cliques 
explore design subspaces that are perceptually similar. Each of the 



individuals is then able to appreciate the other’s work because 
they have constructed appropriate perceptual categories. The 
transfer of artworks from a source to a destination clique will 
introduce new variables into the creative processes of the 
destination clique, the two cliques can then explore in different 
directions, just as two individuals do when they share artworks. 
Cliques can therefore act as “super-artists” , exploring a design 
space as a collective and communicating interesting artworks 
between cliques. 

 

 

Figure 7. A screenshot of a simulation clearly showing two non-
communicating cliques.  

 

Figure 7 is a screenshot of the running simulation that has formed 
two cliques. To help visualise the emergent cliques, the distances 
between agents are shortened for agents that communicate 
frequently. The different styles of the two groups can also be seen, 
with agents 0-4 producing smooth radial images with low a fractal 
dimension (~1.4) and agents 5-9 producing fractured images with 
clearly defined edges and a higher fractal dimension (~1.7). A 
brief description of the calculation of fractal dimension used in 
these studies is given below. 

A second pair of groups was simulated with more similar hedonic 
functions that favoured N=9 and N=12. The communications of 
credit between agents is illustrated in Figure 8. The results show 
that while the cliques still form and communication of credit is 
still concentrated within these cliques, there are more inter-clique 
communications than before. 

An interesting observation about the nature of the communication 
between cliques can be made from looking at Figure 8 which 
shows that most of the payments between cliques came from the 
second group with preference for N=12; only one inter-clique 
payment was made by a member of the more conservative group 
that preferred N=9, i.e. between agent-1 and agent-5. This 
observation is consistent with the earlier observation that it is 
better to be too conservative than too radical when trying to gain 
the recognition of others with different preferences for novelty. 
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Figure 8. The communication of credit between two groups of 

agents having preference for novelty values N=9 and N=12. 

 

There are at least two possible explanations for this observation. 
The first is that agents with a higher preference for novelty can 
find the images produced by more conservative agents novel in 
comparison to the work of their fellow clique members. The 
second is that agents that prefer lower levels of novelty cannot 
appreciate the work of more radical agents and hence never 
attribute any credit to them. It is unclear from these results which 
explanation is more likely as either would explain the data. 
Further work may find that both behaviours play a role in the 
formation of cliques and the unequal communication of credit 
between them. 

The results of this experiment show that when a population of 
agents contains subgroups with different hedonic functions, the 
agents in those subgroups form cliques. The agents within a clique 
communicate credit frequently amongst themselves but rarely to 
outsiders. The stability of these cliques depends upon how similar 
the individuals in different subgroups are and how often the 
agents in one subgroup are exposed to the artworks of another 
subgroup. Further research is needed to determine whether other 
factors that can affect judgements of interestingness can similarly 
affect the social structure. 

The studies of clique formation in the fields modelled by The 
Digital Clockwork Muse provide an indication of how the 
methods of anthropology and sociology can be applied to 
artificially creative systems. As a consequence of these studies we 
can begin to understand how barriers form between different 
members of a field. The utility of this approach can be seen in the 
development of the fields of computational sociology and 
computational anthropology to investigate social phenomena. 
Potentially, similar models may be able to illuminate issues 
surrounding the emergence of “paradigm shifts”  as documented 
by Kuhn [6]. 

Domains of Complexity 
To investigate the relationship between the search for novelty and 
the complexity of the resulting artworks an experiment was 
conducted to compare agents with different preferences for 
novelty encoded in their hedonic functions. To measure the 
complexity of the images the fractal dimension of selected images 
was calculated. The calculation was performed on the images after 
image processing to determine the dominant edges so that the 
fractal dimension would be that of the images as perceived by the 
agents. The fractal dimension was estimated using the box 
counting method – this is the same method that Taylor et al. [15] 



used to determine the fractal dimension of Jackson Pollock’s drip 
paintings. 

For any two-dimensional image, a measure of its fractal 
dimension will produce a value between 0.0 and 2.0, depending 
on how much of the space is filled in the image at different levels 
of detail. To calculate the fractal dimension of an image a series of 
grids are place over the image and the number of boxes occupied 
by the feature of interest in the image is counted. Figure 9 
illustrates the process where the edge segments are the feature of 
interest. 
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Figure 9. The box-counting method of estimating fractal 
dimension of an image. 

 

The fractal dimension can be calculated manually by plotting the 
count of boxes containing features against the number of boxes 
per side on a log-log graph and performing a linear regression. 
The gradient of the line produced is used as an estimate of the 
fractal dimension. More information about the box-counting 
method of fractal dimension estimation can be found in 
Mandelbrot [8]. 

To investigate the relationship between the preferred degree of 
novelty and the fractal dimension of the resulting images, two 
types of agents were used. One type preferred novelty values of 
N=18 and the other type favoured novelty values of N=11. Three 
agents of each type were allowed to explore the space of genetic 
artworks for 50 time steps. 

Figure 10 shows how the average fractal dimension of the images 
selected by the three agents in each test group changed over time. 
The graph shows that agents with a preference for greater novelty 
produce images with higher fractal dimensions, appearing to 
confirm Martindale’s hypothesis that the search for novelty 
promotes increased complexity over time [9]. To confirm this 
relationship between fractal dimension and preferred novelty, 
similar tests (3 agents/group for 50 time steps) were performed for 
a total of 19 different test groups with hedonic functions that 
favoured novelty values in the range 1 ≤ N ≤ 19. 
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Figure 10. The development of two distinct styles of images with 
different fractal dimensions in two groups of agents with hedonic 

functions that peak for the values of novelty indicated. 

 

Figure 11 shows that the relationship between the preferred value 
of novelty and the fractal dimension of the resulting images is 
almost linear for the large proportion of values for preferred 
novelty. Performing a linear regression on the data points we 
discover that on average the fractal dimension of the resulting 
image goes up by 0.1 per unit step in novelty preferred. 
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Figure 11. A comparison of the average fractal dimension against 

a range of peak hedonic values. 

 

Visually this means that the images produced by agents that prefer 
greater novelty appear more complicated than those produced by 
agents that prefer lower amounts of novelty. Figure 12 displays a 
small gallery of images recorded as examples of interesting 
artworks by the test groups with preference for the novelty. 

How can we explain this relationship between the preferred 
novelty of an agent and the fractal dimension of the resulting 
images? One explanation is that the curious exploration of the 
space of genetic artworks drives the agents towards subspaces that 
have an appropriate amount of local variability to continually 
satisfy the need for novelty. Consequently, agents that prefer 
novel forms will tend towards areas of the design space that 
produce more complex images, as there is a great deal more 
variability between complex images than between simple ones. 

Analysing the domains produced by fields of curious individuals 
we have been able to gain some interesting insights into the 
relationship between the search for novelty and the complexity of 
the works produced. Analysing the history presented by the 
domains of small groups of individuals provided clear evidence 
that the complexity of works increases over time as the 
individuals explore the space of possible artefacts. It also 
suggested that agents with different levels of preferred novelty 
produced artefacts with different levels of complexity. An 
approach more akin to the multiple domain spanning 
historiometric approach of Gruber [5], Simonton [13], and 
Gardner [4] provided a clearer picture of the relationship and a 
clear link between the preferred novelty of curious design agents 
and attributed novelty within The Digital Clockwork Muse was 
developed. 
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Figure 12. A small gallery of artworks produced by agents with 
different preferences for novelty (N) ranging from N=0 to N=19. 

CONCLUSIONS 
The aim of this paper has been to show that the artificial creativity 
approach to developing computational models of creative systems 
provides useful basis for a wide range of studies into the three 
essential components of any creative system. The ability to 
experimentally study the computational processes of the 
individual as well as the emergent social structures in the field and 
the records kept in the domain provides an exciting opportunity to 
conveniently combine multiple approaches to the study of 
creativity that are, by necessity, conducted in relative isolation in 
the real world. 
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