
Fluidic Games in Cultural Contexts

Mark J. Nelson, Swen E. Gaudl, Simon Colton, Edward J. Powley,
Blanca Pérez Ferrer, Rob Saunders, Peter Ivey, Michael Cook

The MetaMakers Institute
Falmouth University

metamakersinstitute.com

Abstract

We introduce fluidic games, a type of casual creator
that blends game play and game design. Fluidic games
have a core of built-in games that anchor a space of de-
sign possibilities around them, and encourage players
to alternate between playing specific games and play-
ing with the design space. Our Gamika Technology
platform supports fluidic games on mobile devices, and
we have thus far built three of them. In doing so, we
have found that even for simple games, fluidic games
require computational creativity support. This takes
several forms intended to keep design sessions play-
ful and fast-moving, including automated game design
used as a form of brainstorming, mixed-initiative co-
creative design to ease design-space navigation, and au-
tomated game playing to evaluate game dynamics. Fi-
nally, we have exhibited this fluidic-games concept in
three distinct cultural settings: a series of rapid game
jams lasting 1–2 hours each, an in-progress semester-
long enrichment course with a local school, and an art
installation that foregrounds an autonomous version of
the system exploring a fluidic game on its own, at least
if the audience will allow it to do so.

Introduction
Fluidic games are initially just games, playable as any other
game. But in contrast to games that emphasise a single, care-
fully designed artefact, fluidic games emphasise that any in-
dividual game is always only a single point in a larger game-
design space, from which many other games could also
have been made, from trivial variants to significantly dif-
ferent games. Players are encouraged to explore this space
with minimal context shift between the playing and design-
exploration modes.

A focus of our research agenda is investigating differ-
ent approaches to this exploration, which can be viewed
as falling along the spectrum of mixed-initiative hu-
man/machine co-creativity in games (Smith, Whitehead, and
Mateas 2011; Grace and Maher 2014; Yannakakis, Liapis,
and Alexopoulos 2014; Liapis, Smith, and Shaker 2016;
Nelson et al. 2017). At one end of the spectrum of mixed-
initiative creativity is an orientation towards enabling hu-
man creativity (Shneiderman 2007); at the other is fully au-
tonomous game creation (Cook, Colton, and Gow 2016).

We focus on casual games played on mobile devices,
which many people play, but few design. We aim to help
to democratise this situation by making the player/designer
boundaries more fluid, so players can play individual games
and also play with the design itself, within the same app
and with frequent alternation between the two modes. In
addition to minimal context shift from playing to design-
ing, we also aim to have a difference in time commitment:
users playing an iPhone game on the bus ride home should
be able to spend 20 minutes designing a variation of that
game on their iPhone, too, and then go back to playing their
new game. Or, they might want to press a button and have
an AI designer generate a new game—we have found that
even when oriented towards human design, some degree of
automated design is desirable to make navigating the space
playful rather than tedious. A fluidic game is not just a game
to play, but neither is it a traditional game-design tool.

Fluidic games therefore fit into the larger category of ac-
cessible, low-commitment, fun-to-use creative tools dubbed
casual creators (Compton and Mateas 2015). They also fit
into a broader class of user-modifiable games, which we’ll
call maker-games, which give players the ability to change
some aspect of the game, most commonly by including a
level editor (as seen in Nintendo’s Super Mario Maker).

Mobile games are an especially good setting for casual
creators, both because they are widely played even by peo-
ple who don’t necessarily see themselves as “creators”, and
because games foreground concepts such as initiative and
agency that allow creative game design tools to piggyback
on familiar game-playing terminology and concepts. Games
also pose a challenge by integrating many creative design
domains, from systems thinking to storytelling to visual aes-
thetics (Liapis, Yannakakis, and Togelius 2014).

We have piloted the fluidic-games concept in three dis-
tinct cultural settings, in addition to planning the public re-
lease of two fluidic games, Wevva and No Second Chance,
on the iOS App Store. We have used both Wevva and No
Second Chance to host rapid game jams, a version of a
game jam in which players can make their own games in
as little as 10 minutes, with the overall jam lasting no more
than 1–2 hours (traditional game jams typically last 24–72
hours). We are currently engaged in a more extended educa-
tional experiment using No Second Chance to teach game-
design and elementary physics principles to students in a lo-



(a) (b)

Figure 1: (a) Four Gamika games designed with (b) Cillr.
Cillr design panels clockwise from top left: List of editable
saved games, a screen of movement-related sliders, brain-
storming wheel to randomise subsets of parameters, and
drawing interface to edit controllers.

cal school. And finally, we designed and exhibited an artis-
tic installation called I Create, You Destroy, based on a fully
autonomous version of No Second Chance in which an au-
tonomous creative system designs and plays its own games,
and human participants (if they choose to participate) play
only a destructive role in the creative process.

Gamika Technology
To enable the design of fluidic games, we have built a
platform, Gamika Technology, that parameterises a game-
design space with 284 parameters, plus associated visual and
audio assets. Parametric design is not the only technique for
building fluidic games, but one we think is well suited to the
task, as it casts the problem of design-space navigation in a
concrete setting suited to both user-interface design and au-
tomated exploration. On this platform, we have built three
fluidic games. One, Cillr, is based on the entire space and
is used primarily as an in-house app to explore the design
space in full generality; while initially intended as a fluidic
game, it may be seen as closer to a design tool, as discussed
below. Two others, Wevva and No Second Chance, are more
focused fluidic games in specific genres, soon to be publicly
released on the iOS App Store.

The basis of the Gamika Technology platform is a 2D
game engine parameterised by 284 features that we have
identified as core to a diverse range of casual games. This set
includes parameters controlling the physics engine, player
interactions and scoring/win-conditions. Physics param-
eters expose common features of a 2D physics engine:
object spawn rates/locations, collision responses, attrac-
tive/repulsive forces, etc. Interaction parameters specify

how players interact with the physics world, such as when
and how objects respond to the player tapping or dragging
on the screen. Scoring and win-condition parameters spec-
ify how events impact the game outcome (the more narrowly
conceived rules of the game). A more detailed parameter
overview is given in (Powley et al. 2016, Section III).

Games for the Gamika platform are encoded in parameter
chromosomes; the term is borrowed from evolutionary algo-
rithms, as automated game generation is a part of each flu-
idic game. The chromosomes are augmented with data such
as graphical and sound assets. Given a chromosome, the
Gamika platform can run the game via an interpreter that al-
lows runtime changes to the game specifications. Figure 1a
shows four example Gamika games, each designed using the
Cillr app, described in the next section.

Apps
Cillr
The first app built on the Gamika Technology platform is
called Cillr, which enables navigation of the entire Gamika
design space. Although this can be seen as a type of fluidic
game, due to the size of the design space and relatively un-
focused nature of the app, we use it primarily as an in-house
design tool, from which we have drawn lessons used to build
the more focused fluidic games discussed in the subsequent
two sections, which are intended for public consumption.

Cillr implements baseline versions of both manual and
automated navigation of a parametric design space. The
most direct way of manually navigating the 284-dimensional
design space is to give the user 284 sliders, with which they
can set each parameter. While this approach – implemented
in Cillr – is simplistic, it does work fairly effectively. The
sliders are grouped into categories with related functionali-
ties to make them more discoverable (the spawning-related
sliders are collated, the collision-related sliders likewise,
etc.). A few panels of the app are shown in Figure 1b.

The simplest way of automatically navigating a large pa-
rameter space is to randomise the parameters. However, we
have found that this produces too low a yield of playable
games, and hence Cillr mutates subsets of parameters from
existing games instead. Randomly mutating multiple sets to
produce a new random game, and then trying to figure out
what it is, can be a fun interaction loop. If the user isn’t
interested in understanding and exploring the entire design
space, however, the proportion of playable games remains
too low for the mutation approach in Cillr to be ready for
end-user consumption.

Besides producing Gamika chromosomes (both manually
and with randomisation), Cillr includes editing tools for
graphical elements such as sprites, level layout, and light-
ing, so complete games can be produced, including games
with level progressions and multiple levels of difficulty. We
have used the interface to produce clones of classic games
like frogger, asteroids and space invaders, as well as a vari-
ety of novel casual games; a narrated set of design sessions
is reported in (Colton et al. 2016).

As an initial baseline, Cillr is usable, at least by experts,
though it does not yet contain interesting levels of automated



(a) (b)

Figure 2: (a) Four Wevva games produced with the in-app
design interface (b) which is described in the text.

game design. Its main drawback is that it is complicated to
navigate, requiring some time to hunt for the correct slider
to change to make something specific happen. Furthermore,
even after having found the desired parameter, it can be diffi-
cult to understand why the game didn’t change as expected.

In a preliminary user test with game-design undergrad-
uate students, we found them somewhat frustrated by the
experience of using Cillr to make games. Interface com-
plexity was one issue, but more importantly, the difficulty
of understanding the high-dimensional design space made it
hard for these initial testers to grasp what they wanted to do
in the app, and how they would begin to do it. Therefore,
rather than focus initially on improving Cillr’s interface or
including more automated co-design elements, we have in-
stead focused on producing design tools for more cohesive,
lower-dimensional design subspaces of the Gamika Tech-
nology platform that do not expose the entire design space
at once. The first two of these are discussed below.

Wevva
Using Cillr, we made a four-in-a-row game called Let It
Snow, where snow and rain pour down from the top of the
screen (as white and blue balls respectively). When four
or more white balls cluster together, they explode and the
player gains a point for each in the cluster. Each white ball
that explodes is replaced by a new one spawned at the top,
with a maximum of 20 on screen at any one time. Likewise
with blue balls, except the player loses one point for each
that explodes. Players can interact with the game by tapping
blue balls to explode them, losing a point in doing so.

While the game rules are straightforward, we have found
Let it Snow to be challenging and require puzzle-solving
strategies. There is a grid structure which collates the balls
into bins, and the best way to play the game involves trap-

ping the blue balls in groups of twos and threes at the bot-
tom, while the whites are exposed and are continually re-
freshed through cluster explosions. Occasionally, when all
blues are trapped in small clusters, only whites will spawn,
which is akin to snowing (hence the games name) and is a
particularly pleasing moment to aim for.

We used Cillr to produce a number of variations of Let It
Snow, initially also with the winter precipitation theme, but
since expanded to include multiple settings and seasons, as
well as characters such as pigs, bees and frogs. The latter
were added because feedback from playtesters in our rapid
game jams (described later in this paper), who had used an
early version of the app lacking living characters, found it
difficult to invent narratives explaining what each game was
about. This expanded design space will be released as an
iOS game entitled Wevva (Figure 2).

This app further includes two aspects that are not com-
mon in casual games: (a) an AI player that can assist novice
players, and (b) a design screen enabling players to edit
the games’ mechanics, as well to generate levels in a semi-
random way as a source of inspiration. In Let It Snow, the
AI player appears on-screen as a gloved hand that taps the
blue balls to keep clusters of four from forming (Figure 2a,
top right), implementing one part of a winning strategy. A
slider lets the player change the level of AI assistance. At
50%, it feels like having an in-game partner helping out. At
100%, the game is quite different, as the AI player takes care
of one aspect of the game (avoiding losing points), freeing
the player to concentrate on gaining points.

The design screen (Figure 2b) exposes many elements of
the game design to the player: (a) what happens when the
player taps on a sprite, such as exploding, changing direc-
tion or transforming into another kind of sprite (b) the shape,
size and control scheme for the controller or grid (c) the
sprites that exist in the game (d) scoring attached to events
such as sprites exploding, being tapped, hitting screen edges
or forming clusters (e) sprites’ spawning locations, speeds,
and limits (f) sizes of sprites (g) physics parameters, namely
bounciness, wind strength and initial speeds (h) win/loss
parameters, namely a time limit and score target (i) back-
ground art setting the location and (j) music selection.

There is an inspiration button designed as a brainstorming
assistant, which will set these parameters in a varied way, but
designed so that the clustering score mechanic is balanced in
terms of expected score. We achieved this by running online
simulations of novice players and recording the number of
times that clusters of each size and type occurred. Finally,
there is a clean slate feature, which resets parameters to a
standard starting point.

We have conducted a series of “rapid game jams” using
Wevva, described in the Cultural Contexts section below.
These have helped to promote mixed-initiative creativity in
fluidic games through events, and to refine their concept and
design by observing what people do with fluidic game apps.

No Second Chance
Again using Cillr, we designed a game of patience and con-
centration, Pendulands. Here, balls move in a pendulum-
type motion and annihilate each other if they collide; the



(a) (b)

Figure 3: (a) Four No Second Chance games produced with
(b) the in-app design interface. The top two design-interface
panels show manual navigation of the space of parameters,
and the bottom two show automatic game generation with
split-screen auto-playtesting.

player must catch five of them by hovering under them with
a large round target until they stick. By varying parameters
within this theme, we discovered that a whole set of Pendu-
lands variants (or levels) can be created. The anchor points
defining this sub-space of Gamika games are: the player
always controls the target by dragging and must catch five
balls on the target. Within these parameters, very different
games can be created, both in terms of their game dynamics
and in terms of the types of challenges they pose.

No Second Chance is our third app, built around this space
of games, a few of which are shown in Figure 3a. The name
comes from a meta-game mechanic: players can send games
to each other in such a way that they are deleted if the re-
ceiver doesn’t beat the game on first playing (in five min-
utes). This emphasises the disposable nature of games in a
generative space, where part of the challenge is exploring the
space of games and figuring out how each one works when
first encountering it.

As with Wevva, a design screen (Figure 3b, top) lets play-
ers make new No Second Chance games. It is laid out as a
hierarchical menu, with submenus allowing visual style and
a variety of physics parameters to be changed. Since what is
fixed about No Second Chance games is the control and scor-
ing mechanism, new games are made by varying physics,
spawning and scoring options, which can produce very dif-
ferent game dynamics and mechanics. To demonstrate the
types of games that can be produced (and to provide an ini-
tial challenge), the app comes with 100 games we designed
using this interface, which we’ve categorised into three pri-
mary types of challenges: skill games, where the primary
challenge is dexterity; ingenuity games, where the primary

challenge is figuring out a specific trick or strategy; and pa-
tience games, which involve waiting for the right situation
to arise and capitalising on it accordingly.

The generation button creates a new game via an evolu-
tionary process. In particular, meaningful blocks from ex-
isting games’ chromosomes are crossed over, randomly mu-
tated, and then filtered using static heuristics to reject clearly
bad candidates. The first four candidates that pass the filter
are auto-playtested on the device in a split-screen view (Fig-
ure 3b, bottom) that plays them at 8x speed for 5 seconds,
the equivalent of 40 seconds of game time. We want games
to be playable but not too easy, so the app chooses the game
that the automated playtester was able to catch the most balls
on, without being able to catch all five.

The split-screen visualisation of playtesting isn’t strictly
necessary; games could simply be silently generated and
given to the user, which would be computationally cheaper
as well. But this kind of “Hollywood AI” visually exter-
nalises to users what the apps’ AI components are doing.
It can also be entertaining in itself to watch the generation
process, as new games are created and then played at rapid
speed by the automatic playtester.

The term Hollywood AI comes from the frequent use in
films of flashy computer interface mock-ups, which we use
as a reference point. These are designed to look glitzy and
active and to convey an idea of what the system is doing.
While sometimes derided by technologists for not bearing
much resemblance to real computers, the entertainment and
progress-externalisation aspects of imagined film interfaces
can be usefully adapted in real designs (Shedroff and Noes-
sel 2012). They translate especially well to computational
creativity systems, where it is key for the AI software to
communicate when it takes the initiative and what it is do-
ing, in this setting ideally through the use of readable visual
conventions, e.g., the usage of an on-screen hand painting
pictures with The Painting Fool (Colton and Ventura 2014).

Applications in Cultural Contexts
Rapid game jams
Game jams are events in which small teams make a game
in a much shorter period of time than in traditional com-
mercial game development. Typically lasting between 24
and 72 hours, these events bring some of the community-
building and culture of LAN parties, in which players play
games (Taylor and Witkowski 2010), to the process of
game development. This produces “accelerated, constrained
and opportunistic game creation events with public expo-
sure” (Kultima 2015). They have had a large cultural impact
on the indie game community, and have helped in develop-
ing a more experimental and inclusive game-development
scene (Westecott 2013; Bonaiuto et al. 2014).

We aim to capture these positive aspects of game jams,
but at a much shorter timescale, and with more focus on de-
sign experimentation and less on implementation. Despite
being much less rigid than traditional game development,
game jams still largely resemble a software hack-session, in
which teams spend several days implementing an initial idea
as a prototype (Musil et al. 2010). Researchers have found



that teams tend to start with an idea that remains largely in-
tact (even if scaled down or modified where it turns out to
be infeasible), with most of the time spent implementing a
working prototype of that idea, rather than more free-form
design experimentation (Zook and Riedl 2013).

We would like to foster game jams that emphasize design
experimentation to a greater extent, with radically cut down
time commitments. While making a game in a weekend is
already much less of a commitment than forming a company
and spending months on it, it is far more of a commiment
than playing a casual game during spare time, which is our
reference point for the context in which fluidic games should
be both playable and designable.

Rapid game jams, lasting from as little as ten minutes up
to a maximum of two hours, fit this role. In their short-
est form, we have held in-office ten-minute game jams with
people already generally familiar with the apps, to test and
improve the ability to support this kind of tightly constrained
creative design. We have also held longer 90-minute ses-
sions (described below) with several large groups of chil-
dren who had never used the apps before. This allows some
time for participants to initially play the fluidic games’ built-
in games to orient themselves in the design space, followed
by exploring new designs through the automatic generator
and/or the design interface.

The first large-scale rapid game jam we held with Wevva
was with 65 members of Girlguiding Cornwall’s Brownie
programme (i.e., girls aged 5-9), who visited Falmouth Uni-
versity as part of a larger Girls Can Code event on 18th
February 2017. This was conducted in two sessions, with
35 users in the first and 30 in the second. Users were paired
up with typically two (occasionally three) users per iPad.
We began by asking them to play the included games for ten
minutes. Then, we provided a brief introduction to the de-
sign interface and gave them about an hour to design their
own games. This was followed by a period where they
shared their games with other participants. Concluding the
sessions we handed out a feedback form which contained a
set of questions about their experience with the app.

The playtest of the four built-in games produced largely
negative results. These games are puzzle-oriented, requiring
the player to be patient and come up with a winning strategy;
but here, very few were able to discover a winning strategy.
The design side of the user test was more successful, how-
ever, as the children proved adept at using the built-in design
tools to design other types of games in this space of games,
which they preferred to the built-in games. The games they
designed were generally more action-oriented, where tap-
ping quickly on things is the winning strategy, and where
there is more instant feedback about when the player took a
good or bad action.

We conducted two further rapid game jams with 40 mem-
bers of Girlguiding Cornwall’s Guides programme (i.e.,
girls aged 10-14), who visited Falmouth University on 23rd
February 2017, also as part of the Girls Can Code event.
We used the same approach and structure as in the first
game jams, starting with an introduction to the included
games and a ten-minute game playing session to familiarise
them with the game, its controls and mechanics. In con-

Mechanic Used as primary Used at all
Herding to collect 21 39
Tap-em-up 13 42
Keeping separate 12 30
Catching to collect 8 10
Batting away 7 17
Spawning flow 6 13
Toy-like 3 10
Protect sprites 1 7
Protect zones 1 6
Steady hand 0 2
Fast reaction 0 1

Table 1: Classification of the game mechanics used in the
72 games saved by participants in the Girlguiding Cornwall
rapid game jams.

trast to the younger participants from the first two sessions,
the older participants spent more time playing the four in-
cluded games. They also approached the four games more
closely to our expectations, probing and trying out different
strategies. Repeating the structure, we gave them an initial
introduction to the design space, and, as with the first two
groups, the possibility to explore the design space by cre-
ating and sharing their own games. Similar to the younger
groups, we also concluded the sessions by handing out our
feedback form which contained questions about their experi-
ence with the app. Our first observations of their exploration
of the game space showed that the designed games some-
times still focused on fast tapping game mechanics, but we
also saw a wider range of games which required more so-
phisticated strategies.

During each of these rapid game jams, we encouraged
participants to save games they liked and share them with
others. At the end of the sessions, we collected the saved
games, totalling to 72, for analysis. Table 1 presents one
way to get an overview of the design space explored in the
game jams by grouping the games according to the game
mechanics they use. We labeled each game with the primary
game mechanic it makes use of and one or more secondary
mechanics. The game mechanics we identified are:

• Herding to collect: group together clusters of sprites.

• Tap-em-up: tap as rapidly as possible on certain sprites.

• Keeping separate: keep some sprite types apart.

• Catching to collect: catch sprites with the controller.

• Batting away: knock some sprite types off the screen.

• Spawning flow: try to manipulate spawning patterns.

• Toy-like: focus on enjoyable interaction, not scoring.

• Protect sprites: keep a sprite type from exploding.

• Protect zones: keep sprites from going off screen at cer-
tain places.

• Steady hand: make careful movements, e.g. to thread
through a narrow gap.

• Fast reaction: make rapid, precise movements or taps.



As can be seen in Table 1 the herding to collect and tap-
em-up mechanics featured in some form in more than half of
the games. This is not surprising, since scoring by forming
clusters and scoring by tapping are two of the more straight-
forward options in the design space. The least common me-
chanics, seen in only three games and not in any case as the
primary mechanic, were those based on skill in controlling
the controller or sprites, whether the steady-hand or fast-
reaction kind of skill. We had designed a number of games
using these mechanics in our own 10-minute game jams, so
that was an interesting difference to notice.

One aspect of automation our current apps do not have
is automatic fix-up of games to balance them and avoid ex-
ploits, although we have done research on a version of au-
tomatic tweaking that runs server-side (Powley et al. 2016).
To see whether such a feature would be important to add,
we classified the 72 games according to whether we, as ex-
pert players, were able to quickly find an easy exploit in the
game design. We were able to do so in 31 of the games. Of
these, the two most common exploits were being able to win
by indiscriminately tapping (seen in 22 games) and being
able to win by doing nothing at all for a short period of time
and win (found in 7 games). On the other hand, since tap-
em-up games were one of the two most common mechanics
used, it’s not clear that winning by indiscriminate tapping
would actually be considered an exploit by the designers.
We observed, for example, some pairs of users sharing an
iPad taking turns playing a very easy game requiring rapid
tapping, but competing to beat each others’ best scores.

Besides this analysis of game mechanics and exploits, we
asked the game-jam participants to fill out a survey about
their experiences. We have performed a preliminary analy-
sis of these survey results, for 30 girls of average age 12, re-
sponding to survey questions quantitatively using the visual
analog scale. While a full user-study analysis is beyond the
scope of this paper (which focuses on cultural applications
of fluidic games), we have found a few interesting results so
far. The following are four statistically significant correla-
tions we observed:

• Positive: Between using the inspiration button and finding
games produced by the inspiration button useful.

• Negative: Between interest in a career in game design and
using the clean-slate restart.

• Positive: Between interest in a career in game design and
enjoying using the app.

• Positive: Between playing a lot of games and enjoying
using the app, as well as feeling more creative.

Wevva therefore seems to attract people who tend to fre-
quently play games; those frequent players also feel more
creative using the app than novice users. Those who are
interested in becoming game designers used the clean slate
less as they seem to feel that the games they produce from
that point in the fluidic space are less interesting. Those not
interested in a career in game design explore more around
the clean slate, perhaps because it gives a familiar starting
point for exploring the game space.

Classroom usage
Through a collaboration with a local school, the Camborne
Science and International Academy, we have been devel-
oping fluidic games into a curriculum suitable for use in
classrooms. The first version of this curriculum, currently
in progress, teaches game design through weekly sessions
of 90 minutes each, designed around experimentation in No
Second Chance. Each week’s lesson introduces a new as-
pect of game design, and most lessons also use that element
of game design as a hook through which to teach material
from another relevant subject. For example, the lesson on
game visual aesthetics introduces students to colour theory,
the lesson on object movement and collision response also
teaches elementary physics, and the lesson on the included
automated game generator introduces students to artificial
intelligence and Computational Creativity.

Use game design to organise a technology-based curricu-
lum is similar in some respects to curricula that introduce
programming in schools through visual programming lan-
guages such as Scratch (Resnick et al. 2009) or its tablet
version ScratchJr (Strawhacker et al. 2015), which often
use games as the motivating example that shows students
what can be done if one learns to code. While we draw
inspiration from these projects, our goal is to focus less
on teaching programming specifically, and more on teach-
ing design in a computational setting, emphasising that pro-
gramming, while an important skill, is not the only aspect
of game design, nor of computational thinking more gener-
ally. The lessened focus on coding as the specific skill to
teach also frees up a larger part of the curriculum to focus
on the connections to other fields, such as the colour-theory
and physics examples mentioned above.

Since we are currently part of the way through the initial
pilot of this curriculum based on fluidic games, we report
only preliminary observations. Game design in No Second
Chance is essentially exploring a physics-based game space
through parameters that produce new types of gameplay dy-
namics, so the curriculum is based around introducing parts
of the parameter space each week, explaining what these pa-
rameters mean, how to design in that space, and how the
new set of parameters impacts game design. The exercises
were designed in a way to incrementally build up knowl-
edge about the physics and parameter space of No Second
Chance, starting with basic control over when and where ob-
jects appear on screen to how to use more sophisticated com-
binations of parameters to balance designed games. Each
lesson sheet contains a set of parameters explained in detail
with examples to guide further exploration. As proposed
by (Resnick 2004), the usage of games should still be play-
ful, so instead of giving them a fixed set of provable ex-
ercises, each is focused on open-ended exploration of the
design space, with a soft peer evaluation/assessment based
around sharing and critiquing each others’ games (an activ-
ity that also, through playing others’ games, helps students
notice aspects of the design space they may have missed).

Structuring an introduction to No Second Chance as a se-
ries of lessons also helped us to better understand its design
space as a fluidic game. To aid the students with their explo-
ration of the game space and at the same time teach them



Figure 4: The I Create, You Destroy interactive installation.
Top: An audience member destroys a generated game just
as the AI was playing it. Bottom: An array of iPads happily
generates and automatically playtests new games.

a further lesson each week (such as elementary physics),
forced us to critically think about sets of parameters and
their relation to each other and how this can be used to
conceive of the parameter space in a more structured man-
ner. While observing students’ exploration, we also became
aware of potentially new and interesting areas of the design
space we have not taken into account yet. The amount of
interest we saw during those sessions both motivated us and
demonstrated the potential of employing more explorative
and creative games into teaching and learning.

An art installation
I Create, You Destroy is an installation of six iPads cre-
ated by @ThoseMetaMakers, the art collective alter ego
of The MetaMakers Institute. This first exhibition by
@ThoseMetaMakers was shown at the first Games As Arts
/ Arts As Games festival, which was held at The Poly in
Falmouth, Cornwall, from the 12th to 22nd October 2016.1

In this work, an autonomous version of No Second
Chance creates, plays, critiques, selects, and shares abstract
artistic games. It happily makes and plays games all day
long, alternating between generating games, using the split-
screen rapid-fire auto-playtesting of the regular No Second
Chance app, followed by playing the generated game at nor-
mal speed. It continues in this generate-and-play loop unless
a visitor touches one of the screens, in which case the game

1metamakersinstitute.com/gamesasarts

that was being made or played is destroyed forever, and the
visitor is told this (Figure 4). Referencing and challenging
the long-standing but highly topical worries that machines
will take jobs and pose existential threats, I Create, You De-
stroy is an artificial intelligence system, but it is not the bad
guy in this case.

In aiming to challenge mainstream assumptions about AI
being a threat, the concept of the piece resides in the bal-
ance produced by using a mainstream platform (iPad) and
a mainstream genre (casual games) to challenge this main-
stream assumption. The AI hides behind the bold, sharp and
colourful surface of six iPads fixed to the white background
wall. With white cases and white background, only the play-
ful images of Gamika stand out. The small balls move fast,
appearing from everywhere, going anywhere. New games
are created directly in front of visitors, who are faced with
a choice to make: either merely watch, or act, interact and
then themselves become a threat to creativity.

Breaking the assumption and questioning what we are ex-
pected to do is the core of I Create, You Destroy, as the audi-
ence is presented with a tablet, which they are normally ex-
pected to touch, running a a game, which they are normally
supposed to play. However, this is not what they should do
in this case; in moral terms the audience acts destructively if
they fulfill the usual expectations of interaction.

The exhibition included works from a number of other
artists working with games as a medium, such as Alan
Meades, Ian Gouldstone and Oliver Sutherland; as well as
artwork from games such as Lumino City (State of Play)
and Machinarium (Amanita Design). One point of connec-
tion, where I Create, You Destroy meets Ian Gouldstone’s
piece Cruise Control 2020 and Oliver Sutherland’s Untitled
(Loosing it), is the idea of the continual moving image. In
the tradition of art built on game technologies (Bittanti and
Quaranta 2009; Sharp 2012), these works play with game
tropes, but are not presented as games the viewer themselves
can play. And yet the spectator is not merely watching a
pre-recorded movie, when the creative process is happen-
ing right there. What is going on will never occur again. We
could consider this uniqueness one of the holy quests of con-
temporary art and Computational Creativity. Since we lost
the unique nature of the artefact, we seek the exceptional
character of the experience. Games technologies and AI en-
able the rise of a new hybrid art form between installation
and performance with something sculptural and cinemato-
graphic about it.

Conclusion
We have introduced and investigated fluidic games, which
are casual creator apps for hand-held devices. Fluidic games
are in the genre of maker-games, games that can be modi-
fied by users in various ways. However, with fluidic games,
users can not only design levels or skin games, as is com-
mon in other maker-games, but can change underlying game
mechanics such as the physics, scoring mechanisms, player
input, and how objects interact.

In contrast with game-creation environments such as
Scratch Junior, game design in fluidic games can be achieved
without any coding requirements. Indeed, we have designed



our fluidic games to have fun, efficient user interfaces, so
that the line between making and playing a game is fairly
blurred. To achieve this has required some element of Com-
putational Creativity support in the app, and we have de-
scribed how automatic game generation and auto-playtesting
have enabled users to search larger spaces of the game space,
with less frustration than they would do without these tools.

Since game-playing and game-making are always situated
in cultural contexts, we have been experimenting with how
fluidic games fit in three cultural contexts, in order to drive
both our design and technology development through real-
world experience. Our three pilot settings are: 1) using flu-
idic games to host rapid game jams, which last no more than
1-2 hours and focus more on exploring design possibilities
than game implementation, 2) integrating fluidic games into
a school curriculum in order to both teach game design, and
use game design as a hook with which to introduce concepts
such as colour theory, physics, and artificial intelligence, and
3) adapting an autonomous version of fluidic games as an art
installation, with an AI agent both designing and playing the
games, in this case to comment on the assumption that AI is
likely to play destructive, dangerous roles in society.

Open technical research problems include: improving au-
tomated game generation and automated game playing in
open-ended spaces, enabling more close coupling between
the generative mode (currently used for brainstorming) and
the user-operated design interfaces, and developing new
methods to enable users to playfully explore design spaces
(the latter includes developing methods to better familiarise
users with the Computational Creativity concept of design-
space navigation in the first place).

Acknowledgments
This work is funded by EC FP7 grant 621403 (ERA Chair:
Games Research Opportunities). We are grateful to Girl-
guiding Cornwall and the Camborne Science and Interna-
tional Academy for their collaboration.

References
Bittanti, M., and Quaranta, D. 2009. Gamescenes: Art in
the Age of Videogames. Johan & Levi Editore.
Bonaiuto, A.; Mingrino, M.; Sampugnaro, R.; Fallica, S.;
and Mica, S. 2014. Participation at the Global Game Jam:
A bridge between consumer and producer worlds in digital
entertainment. GAME 3(2):35–45.
Colton, S., and Ventura, D. 2014. You can’t know my mind:
A festival of computational creativity. In Proc. Intl. Confer-
ence on Computational Creativity.
Colton, S.; Nelson, M. J.; Saunders, R.; Powley, E. J.;
Gaudl, S. E.; and Cook, M. 2016. Towards a computational
reading of emergence in experimental game design. In Proc.
Computational Creativity and Games Workshop.
Compton, K., and Mateas, M. 2015. Casual creators. In
Proc. Intl. Conference on Computational Creativity.
Cook, M.; Colton, S.; and Gow, J. 2016. The ANGELINA
videogame design system. IEEE Transactions on Computa-
tional Intelligence and AI in Games.

Grace, K., and Maher, M. L. 2014. Towards computational
co-creation in modding communities. In Proc. Workshop on
Experimental Artificial Intelligence in Games, 15–20.
Kultima, A. 2015. Defining game jam. In Proc. Conference
on the Foundations of Digital Games.
Liapis, A.; Smith, G.; and Shaker, N. 2016. Mixed-
initiative content creation. In Procedural Content Gener-
ation in Games. Springer. 195–214.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. Com-
putational game creativity. In Proc. Intl. Conference on
Computational Creativity.
Musil, J.; Schweda, A.; Winkler, D.; and Biffl, S. 2010.
Synthesized essence: What game jams teach about proto-
typing of new software products. In Proc. Intl. Conference
on Software Engineering, 183–186.
Nelson, M. J.; Colton, S.; Powley, E. J.; Gaudl, S. E.;
et al. 2017. Mixed-initiative approaches to on-device mobile
game design. In Proc. CHI Workshop on Mixed-Initiative
Creative Interfaces.
Powley, E. J.; Colton, S.; Gaudl, S. E.; Saunders, R.;
and Nelson, M. J. 2016. Semi-automated level design
via auto-playtesting for handheld casual game creation. In
Proc. IEEE Conference on Computational Intelligence and
Games, 372–379.
Resnick, M.; Maloney, J.; Monroy-Hernández, A.; et al.
2009. Scratch: Programming for all. Communications of
the ACM 52(11):60–67.
Resnick, M. 2004. Edutainment? No thanks. I prefer playful
learning. Associazione Civita Report on Edutainment 14.
Sharp, J. 2012. A curiously short history of game art. In
Proc. Conference on the Foundations of Digital Games.
Shedroff, N., and Noessel, C. 2012. Make It So: Interaction
Design Lessons from Science Fiction. Rosenfeld Media.
Shneiderman, B. 2007. Creativity support tools: Accelerat-
ing discovery and innovation. Communications of the ACM
50(12):20–32.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. IEEE Transactions on Computational Intelli-
gence and AI in Games 3(3):201–215.
Strawhacker, A.; Lee, M.; Caine, C.; and Bers, M. 2015.
ScratchJr demo: A coding language for kindergarten. In
Proc. Intl. Conference on Interaction Design and Children.
Taylor, T. L., and Witkowski, E. 2010. This is how we play
it: What a mega-LAN can teach us about games. In Proc.
Conference on the Foundations of Digital Games, 195–202.
Westecott, E. 2013. Independent game development as craft.
Loading... 7(11).
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proc. Conference on the
Foundations of Digital Games.
Zook, A., and Riedl, M. O. 2013. Game conceptualiza-
tion and development processes in the Global Game Jam. In
Proc. FDG Workshop on the Global Game Jam.


