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Abstract: Taiwan frequently suffers from
strong ground motion, and the current building
code is essentially based on two seismic zones,
A and B. The design value of horizontal acceler-
ation for zone A is 0.33g, and the value for zone
B is 0.23g. To check the suitability of these val-
ues, a series of actual earthquake records are con-
sidered for evaluating peak ground acceleration
(PGA) for each of the zones by using neural net-
work models. The input parameters are magni-
tude, epicenter distance, and focal depth for each
of the checking stations, and the peak ground ac-
celeration is calculated as the output with the use
of spatial relationship in an averaged sense. The
neural network model estimations showed that for
5 of the locations, out of the 24 locations consid-
ered, the design value recommended in the build-
ing code would be exceeded. In addition, a curve
fitting model, PGA = 8.96/Df, is developed for
the relationship between horizontal PGA and fo-
cal distance (Df), and reflecting the essential char-
acteristics of strong motion in region investigated.
The neural network model and the mathematical
equation can provide useful information for both
the relevant government agencies and practicing
engineering designers.
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1 Introduction

Located in the circum-pacific seismic zone, the
island of Taiwan is about 400 km long from tip
to tip, 130 km wide at its broadest points and a
total area of about 36000 km2. There are about
54 earthquake faults existing around the whole is-
land, and the occurrence of strong motion has a
very high possibility in this region. According
to the records from Central Weather Bureau Seis-
mological Center (CWBSC), in the years between
1991 and 2004 [Central Weather Bureau (2005)],
the average occurrence rate of strong motion is
18694 per year. Among these earthquakes, 1047
cases can be felt by human beings, where one of
these cases has the possibility to cause property
damages in each year. Seven earthquakes, capa-
ble of causing serious damage, with magnitudes
over 6.5 on the Richter scale have been reported
since 1906. Hence, the need for people living in
this island to deal with the earthquake problems is
inevitable.

From Figure 1 it can be seen that there are three
major earthquake zones in the Taiwan region. The
west seismic zone is about 80 km in width, the fre-
quency of occurrence is low within this zone, but
the resulting damage is serious as the earthquake
in this zone often occurs at a shallow focal depth
(less than 20 km). In the east seismic zone, the
width is about 130 km, a much higher frequency
of occurrence and a deeper focal depth than that of
the west seismic zone, and thus less damage is re-
ported for this zone. The northwest seismic zone
is concentrated on a small area, and the charac-
teristics of strong motion are similar to the one in
west seismic zone. With these regional geophys-
ical characteristics, the effects of strong motions
have to be considered in setting up an adequate
building code for the area.
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Figure 1: Major earthquake zones in Taiwan area
(source: CWBSC, 09/1999 – 12/2004).

Each country has its own building code in ac-
cordance with regional characteristics and con-
struction developing history. However, the con-
tent of the United States Uniform Building Code
(UBC) is probably the most commonly used ref-
erence document for many of countries around
the world. Based on this concept, the Construc-
tion and Planning Agency of Taiwan government
started to consider the effect of strong ground mo-
tion for structural design in the year of 1974, and
three seismic zones were identified in the build-
ing code at that time. In 1982, the design earth-
quake force was increased based on the 1976 ver-
sion of the UBC. Then, a major code revision was
done in 1997, and the original three zones were
replaced by four zones (i.e. 0.33g, 0.28g, 0.23g,
and 0.18g). But after the major earthquake, the
so-called 921 earthquake with a magnitude 7.3 on
the Richter scale in the year of 1999 [Ma (1999);
Lee and Loh (2000)], it was found that the de-
sign codes were unable to reflect the actual situa-
tion. Thus, an adjustment to the building code was
made, and two division zones (0.33g and 0.23g)
became the present design standard [Construction
and Planning Agency (2006)].

From academic point of view, whether the above
mentioned revision in building code is suitable
or not may become an interesting research topic,
and may be checked by scientific methods. Pre-
vious research on earthquake problems can be
found in several published literature [Conte and
Peng (1997); Katayama (1982); Liang et al

(2005); Luco and Wong (1987); Trifunac and
Lee (1989); Trifunac (2005); Yeh and Wen
(1990)], and recent research has used artificial in-
telligence techniques in this important engineer-
ing field [Der Kiureghian and Crempien (1989);
Ghaboussi and Lin (1998); Lee and Han (2002);
Lin and Yong (1987); Ozerdem et al (2006)].
In particular, researchers have used neural net-
work to estimate peak ground acceleration (PGA),
one of the key factors for evaluating the poten-
tial damage resulting from strong motion [Chu
et al (2003); Kerh and Chu (2002); Kerh et al
(1996); Kerh and Ting (2005)]. The results indi-
cate that the use of three seismic parameters, i.e.
magnitude (ML), epicentral distance (Di), and fo-
cal depth (De) in the neural network models can
achieve the best PGA estimations. This research
extends previous work to investigate the suitabil-
ity of using two zones standard in Taiwan’s build-
ing code.

Although conventional methods such as nonlinear
regression analysis may be employed to analyze
seismic records, this method needs to assume a
function form in advance, and the result may not
be able to correctly predict PGA at a particular
site that is different from the checking station. In
contrast, the neural networks are powerful pattern
recognizers and classifiers, which are capable of
estimating PGA not only at the checking point,
but also at a specified point by inputting its spa-
tial relationship. There is some argument about
the lack of physical meaning in neural network
black-box type of training [Benitez et al (1997)],
but more and more researchers agree that this ap-
proach is a primary tool for analyzing random
data sets due to its simplicity and effectiveness.
Thus, the purpose of this study is to analyze seis-
mic records collected at 209 checking stations,
by using back-propagation neural network. The
PGA at 24 geographical central locations, based
on the data set at several checking stations around
a specified location is estimated for each divi-
sion zone (see sketch details in Figure 2). The
estimated horizontal PGA is compared with the
building code design value, and potentially haz-
ardous areas are identified from the neural net-
work calculations. Also, a curve fitting model is
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Figure 2: Sketch details of the investigation area.
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developed based on the relationship between cal-
culated horizontal PGA and focal distance. It is
expected that the results from the present study
will provide useful information for government
agencies and designers working in this field.

2 Neural Network Model and Seismic Data
Treatment

As mentioned in Wikipedia encyclopedia, the
term information technology has ballooned to en-
compass many aspects of computing and technol-
ogy [Wikipedia Encyclopedia (2008)], where ar-
tificial neural network is one of popular methods
used in the recent academic and practical research
fields. Since the pioneer work of artificial neu-
ral concept in the year of 1943, several types of
neural network model have been developed up to
the present time [McCulloch and Pitts (1943);
Hagan et al (2004)]. But due to effectiveness
and easy to implement in a computer code, the
multi-layer neural network with its modification
seems to attract more researchers (e.g. [Mandal et
al (2005); Oishi and Yoshimura (2007); Noroozi
et al (2006); Zhang and Subbarayan (2002)]).
The basic structure of back-propagation neural
network includes an input layer, a hidden layer,
and an output layer. The application of the neu-
ral network approach can be found in various en-
gineering fields, as this approach can be used to
generate the required functions for parameter pre-
diction and pattern recognition [Chang and Chang
(2006); Kuźniar et al (2005); Lu (2005); Pu and
Mesbahi (2006); Sarghini et al (2003); Shanga
(2005)]. In this multi-layered neural network, the
output of each layer becomes the input of the
next layer, and a specific learning law updates the
weights of each layer connections in accordance
with the errors from the network output. The
equation for each layer may be written as:

Yj = F(∑Wi jXi −θ j) (1)

where Yj is the output of neuron j; Wi j represents
the connection weight from neuron i to neuron j;
Xi is the input signal generated for neuron i; θ j is
the bias term associated with neuron j; and F is
the nonlinear activation function. There are sev-
eral functions from which the activation function

can be chosen, but the sigmoid function, of the
form F(x) = 1/(1 + e−x), is commonly used to
limit the output values to be between 0 and 1 for
the input values ranging from negative to positive
infinity. The sigmoid transfer function is used in
this study to make the operating process continu-
ous and differentiable.

Figure 3 shows the basic neural network model
used in the present study, with the three seismic
parameters, magnitude, epicentral distance, and
focal depth forming the input layer. A single hid-
den layer is used and the output layer is the target
PGA. In order to evaluate the performance of this
neural network model, the coefficient of correla-
tion (R) is used and defined as follows:

R =

m
∑

i=1
(xi −x)(yi −y)

√
m
∑

i=1
(xi −x)2

m
∑

i=1
(yi −y)2

(2)

where xi and x are the recorded values and its aver-
age value respectively; yi and y are the estimated
values and its average value respectively; and m
denotes the number of data points in the analy-
sis. This coefficient may have a positive or nega-
tive value, so that its square value R2 is also fre-
quently taken to represent the degree of correla-
tion between the recorded data and the estimation
by the neural network model. In general, when
R2 > 0.7, it denotes a high degree of correlation;
when 0.3 < R2 ≤ 0.7, it denotes a medium degree
of correlation; and when R2 ≤ 0.3, it represents a
low degree of correlation.

ML

Di

De

PGA

Input layer Hidden layer Output layer

Figure 3: Three layers neural network model.
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Furthermore, an error evaluation function is re-
quired to calculate the difference between the ac-
tual record values and neural network estimations.
The root-mean-square error as defined in the fol-
lowing equation was used in this study:

RMSE =

√√√√√
N
∑
n
(Tn −Yn)

2

N
(3)

where N is the number of learning cases; Tn is the
target value for case n; and Yn is the output value
for case n. The performance of neural network
model was evaluated, using the above equations,
to check its effectiveness.

Note that the seismic data sets used were collected
from some of the checking stations in the en-
tire Taiwan Island [Seismological Center (2007)].
Figure 4 shows a typical earthquake wave propa-
gation, where the information such as time, lo-
cation of hypocenter, magnitude (ML), epicentral
distance (Di), focal depth (De), and acceleration
in different directions, were obtained from seis-
mometers installed in the checking stations. In
this study, the data sets are taken from a total of
209 checking stations around the island recorded
between the years from 1994 to 2005. Since the
main objective of this study is to estimate the PGA
value, only the earthquake data with magnitudes
over 5.0 on the Richter scale were chosen, to de-
crease unwanted noise in neural network training.
Each checking station basically provided 30 data
sets, but in cases where there are insufficient ac-
tual records, as for some new stations, then at least
15 data sets were included. Because the useful
seismic data cannot be obtained in a short period
of time, the data sets for analysis in this study may
be considered as a minimum requirement from a
statistical standpoint.

Further, in order to minimize the effect of extreme
values in the data sets, the input data were normal-
ized using the following equation:

ft =
fi(

n
∑

i=1
f 2
i

)1/2
(4)

where fi is the input data obtained from each mea-
suring record; and ft is the new input data af-

epicentral distance

focal depth

hypocenter

focal distance

checking 
station 

Figure 4: Definitions of parameters for a typical
earthquake wave propagation.

ter transformation [Lin (2000)]. With this pre-
processing of data, the input values will be within
the range of 0 to 1, and this normalization will
match with the transfer function used in the neu-
ral network.

3 Neural Network Training and Verification

In this study, the toolbox of MATLAB is used
to develop the neural network models, the details
of this software package and operating procedure
can be found in the user manual or related books
[Yeh (1997); Wun et al (2003)]. It should be
mentioned that before the neural network training
process, three data sets including the maximum
earthquake magnitude, the shortest epicentral dis-
tance, and the shallowest focal depth are set aside
from the whole seismic data sets for each station
for verification of the model. The remaining seis-
mic data sets are used to train the neural network.

By considering one of checking stations in the
Taipei area as an example in the ANN train-
ing process, the rate of error convergence during
training is shown in Figure 5. The curves show
that the root mean square error converged after
about 500 epochs for the three directions (V, NS,
EW). Because there are three directions of PGA
at each station, those result in a total of 627 sets
of weight and bias values in the neural network
models. A typical data set for weight and bias
terms for the example station can be seen in Table
1. Once the training is completed, the verification
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data sets are used to validate the model.

epochs 

R
M

SE

V
NS 
EW

Figure 5: Rate of error convergence during ANN
training.

By taking seven metropolitan areas: Taipei,
Taichung, Chiayi, Tainan, Kaohsiung, Hwalen,
and Taidong in the island as examples, the
averaged square coefficients of correlation ob-
tained from the trained neural network models are
0.9098, 0.8567, and 0.9032 for V, NS, and EW
three directions, respectively. Table 2 shows the
result of for the three verification data sets. It can
be found that the square values of correlation co-
efficient range from 0.8146 to 0.8695, exhibiting a
high degree of correlation. For all estimated loca-
tions, the performance of the ANN models com-
pared to the actual seismic records for the three
directions are shown in Figure 6. The squared val-
ues of correlation coefficient are 0.8244, 0.8519,
and 0.8872 for three directions V, NS, and EW,
respectively. The value is 0.8517 for all com-
bined data sets, indicating that the estimations do
have an acceptable high degree of correlation with
records. Therefore, these neural network models
at each station are ready to simulate PGA estima-
tion values, and the work of post-analysis can be
done from the output.

4 Evaluation of PGA Design Value by Neural
Network Estimation

Based on the classification in the building code for
Taiwan, there are 17 subdivisions in seismic zone
A (i.e. A01 – A17), and 7 subdivisions in zone B
(i.e. B01 – B07). In each subdivision, there ex-
ist several checking stations providing many sets

of seismic data. In this study, the simplest way
for determining the estimation location for each
subdivision is by taking its average coordinate for
checking stations. In case there is only one check-
ing station in the subdivision, this checking sta-
tion is considered as the estimation location for
the whole subdivision. In accordance with the re-
lationship between the coordinates of the two lo-
cations, the seismic data in each checking station
is transferred to the estimation location. Then, by
inputting these transferred data to the neural net-
work model, the PGA is obtained from the neural
network output.

Before evaluating the design values in build-
ing code, a comparison of neural network PGA
estimation with available microtremor measure-
ments at Kaohsiung city (B05) is shown in
Figure 7 [Kerh and Chu (2002); Lermo and
Chávez-Gaírcía (1994); Nakamura and Takizawa
(1990)]. The experimental result is obtained from
the three nearest checking stations in the neigh-
borhood of the estimation location, by the use of
weighting factors based on the distances between
the estimation location and the checking stations.
For the three directions, the result shows that the
present neural network estimation is in reasonably
good agreement with experimental measurement
and previous ANN estimation. This comparison
proves the effectiveness of using the present neu-
ral network model, and provides confidence in the
use of this model for the further analysis.

By taking the PGA values in the NS and EW di-
rections, the horizontal PGA can be calculated for
each station, and the averaging value is then ob-
tained for the estimation location at each subdivi-
sion zone. Figures 8 and 9 show the estimated
horizontal PGA values compared to the design
values of the building code for zones A and B re-
spectively. Iit can be seen that the locations at A05
and A10, for zone A, have the horizontal PGA of
0.332g and 0.340g, which are slightly higher than
that of the design value (0.33g). But at locations
of A06, A08, and A11, the estimated horizontal
PGA has the values 0.375g, 0.578g, and 0.404g,
which are all significantly higher than the design
value. For zone B, the estimated values all comply
with the building code and have a lower horizon-
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Table 1: Typical weight and bias values at one of the checking stations in Taipei.

Weights & Bias W1(1,1) W1(1,2) W1(1,3) W1(2,1) W1(2,2) W1(2,3) W1(3,1) W1(3,2)
V -70.827 -1.971 -4.399 13.971 -2.001 -23.804 49.619 1.698

NS 4.970 1.048 37.240 -4.261 59.494 22.388 -94.580 1.111
EW -63.791 2.044 -5.564 -67.839 -0.956 -30.315 25.283 -0.876

W1(3,3) W2(1,1) W2(1,2) W2(1,3) B1(1,1) B1(2,1) B1(3,1) B2(1,1)
V 9.668 14.916 11.581 25.891 13.550 2.125 -10.979 -27.878

NS -25.668 -13.654 7.947 -13.961 -8.128 -27.642 22.682 11.164
EW 1.750 20.344 6.171 52.581 11.119 21.932 -4.320 -45.869

Table 2: Performance of trained neural network models on verification data sets.
Parameter Direction V NS EW

ML (R2) 0.8612 0.8371 0.8543
Di (R2) 0.8311 0.8517 0.8673
De (R2) 0.8146 0.8339 0.8695

Figure 6: Comparison of neural network model estimations and records, (a) V direction, (b) NS direction,
(c) EW direction, and (d) three combined directions.
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tal PGA than the design value (0.23g). To be safe,
the public should be made aware of these poten-
tial hazardous locations identified in zone A, to
prevent excessive property damages and econom-
ical losses during unpredictable strong motions.
Most importantly, those responsible for revising
the building code should take the results of this
study into consideration in the next revision of the
building code.
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Figure 7: Comparison of ANN estimated PGAs
with microtremor measurements (B05).

Zone A 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Location

H
or

iz
on

ta
l P

G
A

 (g
) 

Building code (0.33g)
ANN

Figure 8: ANN estimated horizontal PGA vs. de-
sign value of building code (zone A).

To better illustrate the potential hazardous loca-
tions„ the three dimensional horizontal PGA plot
for ANN estimations and design values are dis-
played in Figure 10. It is seen that the potential
hazardous locations are in the vicinity of frequent
seismic zones. In particular, the Nantou subdivi-
sion (A08) is near the fault which caused the 921
earthquake (Df = 20.1 km), hence a relatively very
high estimated horizontal PGA is found in this re-
gion. Similar reasons may be found for Taichung
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Figure 9: ANN estimated horizontal PGA vs. de-
sign value of building code (zone B).

city (A05), and Taichung county (A06), which
have Df = 38.2 km, and Df = 28.4 km, respec-
tively. For the subdivisions at Chiayi city (A10)
and Chiayi county (A11), the higher horizontal
PGA may be caused by the 921 after shock, which
occurred on 22/10/1999 with a magnitude 6.4 on
the Richter scale. The focal distances are consid-
ered short, and have the values Df = 20.6 km and
Df = 17.1 km for the two regions.

From the ANN estimation results, it can be found
that the focal distance, which represents two im-
portant earthquake parameters, i.e. the focal depth
and the epicentral distance, seem to have a close
relationship with the horizontal PGA. Therefore,
a simple curve fitting model is developed based
on the 24 estimation cases, and the result is shown
in Figure 11. The curve fits the equation PGA =
8.96/Df with an acceptably high correlation coef-
ficient of R2 = 0.7739, and may be taken to de-
scribe the characteristics of strong motion in Tai-
wan. Because the present study used the actual
seismic records from many checking stations as
the data base, the ANN estimation results and the
developed curve fitting model have an acceptable
level of reliability. Thus, the identified poten-
tial hazard estimations and mathematical equation
provide useful bases for the next revision of the
building code and for practicing engineers for de-
signing construction projects in this region.

5 Conclusion

Taiwan is under constant threat of earthquakes
due to its location at the intermediate boundary
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region of the Eurasia plate and the Philippine sea
plate. It is thus essential to revise the building
code in accordance with the actual strong motion
characteristics. In this study, a back-propagation
neural network model is employed to evaluate the
suitability of code provisions for the current con-
dition. The input seismic parameters are magni-
tude, epicentral distance, and focal depth and their
values are based on the multi-year records col-
lected from several checking stations in this re-
gion. After neural network training and verifica-
tion, the PGA at the output layer is then calculated
and compared with the design value. Thus the
potential hazardous locations are identified and a
curve fitting model is developed for the relation-
ship between horizontal PGA and focal distance.

Following the development of technology for
recording strong motions, some checking stations
and measuring instruments may be installed in
a new area, but some of the old stations may
be closed for various reasons. At the present
time, there are about 686 seismic checking sta-
tions functioning around the island of Taiwan, but
only records of 209 checking stations are taken as
the data for the present neural network computa-
tion. Nevertheless, because the chosen checking
stations are as close to the cities or near as pos-
sible to areas with high population density, the
estimated results should still represent to an ac-
ceptable approximation for the investigation area.
That is, the present neural network PGA estima-
tion should provide a reasonably reliable value in
comparison to the design value of building code.

Although the occurrence of strong motions is un-

predictable, the resulting damages may be re-
duced by using a suitable design value for the
constructions in the applicable region. The divi-
sion of seismic zone in building code is not the
unique reason to decrease the property damage re-
sulting from natural disaster, but it does have a
long term influence on the people living in areas
where earthquakes frequently occur. By balanc-
ing the economical concern and the potential for
property damage, the hazardous locations identi-
fied by the neural network model, provides useful
information for the next revision of the building
code. Certainly, more advanced methods such as
genetic algorithm and vibration analysis may be
used to further explore this crucial topic and to
provide an enhancement for the present research
results.
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