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Abstract: This paper is concerned with the motivation of design agents to promote the
exploration of design spaces. A general form of motivation common to
designers is a curiosity to discover interesting designs. This paper presents
computational models of interest and curiosity based on the detection of
novelty. We illustrate the behaviour of our model of interest by developing a
design agent that is motivated to explore the effects of emergent crowd
behaviours on the performance of doorways.

1. INTRODUCTION

The search for interesting designs is a primary motivation for designers.
Interesting designs provide information about the design task and allow the
designer to learn in advance of a need to apply the knowledge. This type of
curious self-directed learning plays an important role in the weaving together
of problem finding and problem solving, within and between design
sessions.

Studies of preference judgements in designers and non-designers show
that the subjective determination of interestingness depends upon the
previous experiences of the individual (Whitfield and Wiltshire, 1982;
Purcell and Gero, 1992; Martindale, 1990). A design is most likely to be
considered interesting if it is similar-yet-different to previously experienced
designs. In other words, a design is likely to be interesting if it is novel but
not entirely unfamiliar. Consequently, a motivation to seek out novelty can
be a useful general-purpose heuristic in design. Martindale (1990) proposed
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2 CAAD Futures 2001

that the search for novelty is the only constant motivation in the
development of artistic and architectural styles as cultural and social
conditions change over time.

1.1 Emergence in Design

One source of novelty familiar to designers is emergence. A property of a
design that is not represented explicitly at the time of creation is said to be an
emergent property if it can be made explicit (Gero, 1994b; Mitchell, 1993).
Design emergence is the process of recognition and explicit representation of
emergent properties (Gero, 1994a). A familiar example of design emergence
is shape emergence.

Emergent shapes in a drawing or sketch are unintended consequences of
the drawing actions that produced them (Schén and Wiggins, 1992).
Protocol studies of designers while sketching have shown that unexpected
discoveries of emergent shapes can have a significant impact on the course
of further design activity (Schon and Wiggins, 1992; Suwa, Gero et al.
1999). Shape emergence is the process of recognition and explicit
representation of emergent shapes.

1.11 Computationally Modelling Shape Emergence

Typically, computational models of shape emergence have created an
unstructured intermediate representation of a sketch and then identified
emergent shapes by combining elements of the intermediate representation
in new ways. Computational systems using infinite maximal lines (Gero and
Yan, 1993) have proved successful in identifying emergent shapes (Damski
and Gero, 1996) and emergent shape semantics (Gero and Jun, 1995).
Alternative computational models of shape emergence have used bitmap
images as intermediate representations and image processing techniques to
find emergent shapes. Liu (1993) used neural networks to identify previously
learned emergent sub-shapes, Tomlinson and Gero (1997) used a neural
model of early visual processing, and Edmonds and Soufi (1992) used
Gestalt operators to construct emergent groupings of shapes.

1.1.2 Computationally Modelling Design Emergence

Shape emergence is not the only form of design emergence that can be
computationally modelled. Also, to exploit emergence in future design tasks,
design agents must learn about the initially unintended consequences of their
actions. Most of the computational models of shape emergence have lacked
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the ability to learn. As a consequence all of the emergent shapes discovered
had to be considered potentially “interesting” and presented to a user for
further evaluation. In contrast, the computational model of design emergence
presented here builds on previous work that developed a model of shape
emergence capable of learning to expect emergent shapes (Gero and
Saunders 2000).

The computational model of interest described below has been developed
in recognition of the fact that design emergence is more than shape
emergence: it models interest in the emergence of unexpected group
behaviour in crowds of simulated pedestrians. The model of interest is used
to develop a computational model of curiosity that uses the evaluation of
interestingness to motivate the actions of a design agent. The task of the
curious design agent, in this example, is to explore a space of possible
doorway designs that allow crowds of simulated pedestrians to pass in
opposite directions.

While the problem of designing a doorway is conceptually simple, the
complex interactions between the pedestrians mean that emergent group
behaviours play a critical role in determining the performance of different
designs. Therefore the initial statement of the design problem is necessarily
ill defined: it cannot include a description of every relevant detail of
emergent group behaviour in advance. This provides a similar problem to
those faced by human designers: our design agent’s task includes both
problem finding and problem solving.

Section Elintroduces our approach to developing curious design agents.
Section El describes some experiments with an implementation of a curious
design agent applied to the design of a doorway. We conclude with a
discussion of the potential benefits of using curious design agents to assist
human designers.

2. DEVELOPING CURIOUS DESIGN AGENTS

In this section we describe our approach to developing curious design
agents. We begin by examining the role that curiosity and interest can play
in computational models of designing. We then describe the components of a
curious design agent.

2.1 Curiosity
In humans and animals the drive that we call curiosity rewards self-

directed learning through inquisitive exploration in advance of a need to
apply the knowledge gained. Berlyne (1971) describes curiosity as follows:
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Uncertainty can generate a kind of motivational condition that we call
“curiosity”. [...] It will impel action to obtain further information from,
or relating to, the object of curiosity so that information capable of
relieving the uncertainty can be absorbed.

Curiosity motivates a designer to explore interesting designs to relieve
the uncertainty that accompanies an incomplete understanding of the design
space. A designer can be motivated by curiosity to investigate a new
approach to solving a problem simply because it is interesting rather than
because it is successful. Alternatively, curiosity can motivate a designer to
explore new problems because the designer can recognise interesting
problems where familiar designs do not perform as expected, whether for the
better or for the worse.

Computationally speaking, curiosity is a process that internally
generates reinforcement signals sent to an agent’s controller that rewards
the discovery of interesting concepts. The main difference between curious
agents and other types of reinforcement learning agents is that some of the
reinforcement signal is generated internally to reward the discovery of
novelty (Schmidhuber, 1991). Curious design agents must be able to
recognise both problems and solutions as interesting, fortunately, the same
mechanisms can be used for both types of recognition.

2.2 What’s Interesting?

In general, determining interestingness depends upon the knowledge of
the agent and their computational abilities; things are boring if either too
much or too little is known about them (Schmidhuber, 1997). Hence
situations that are similar-yet-different to previously experienced situations
are the most interesting and this is what we mean when we say that
something is novel. 4 novel situation is one that is similar enough to
previous experiences to be recognised as a member of a class but different
enough from the other members of that class to require significant learning.

It is a relatively straightforward to develop a computational model of
interest based on this definition of novelty. A very simple model of interest
used in the following experiments maintains an average of the novelty
detected over a fixed window of the ten most-recent situations. A boredom
threshold is used to determine when the interest in the current area of a
design space is low enough to warrant a change in the design process, e.g. a
switch from problem solving to problem finding.

Empirical research suggests a strong connection between novelty and
aesthetic preference in various creative fields including literature, art,
architecture and music (Martindale, 1990; Gaver and Mandler, 1987). These
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reports lend weight to the argument that novelty is an important determinant
of interest in many creative fields including architecture.

2.3 A Curious Design Agent

The implementation of a curious design agent described here uses a
combination of neural networks and reinforcement learning. Neural
networks are used to construct a world model, i.e. a mapping from designs to
evaluations. The world model constructed by the neural networks is rarely
perfect and predictions of evaluations from design descriptions often contain
errors. Some errors stem from a lack of adequate training and are of little
interest but others are potentially more important.

Two sources of potentially interesting errors found in designing are
consequences of emergent properties of the design task and the nature of
learning and recall processes. Emergent properties of a design task can be
sensitive to small differences in design parameters that can make a big
difference to performance. World models that do not take these small
differences into account can contain significant errors. Machine learning
algorithms trade off being plastic enough to learn about new experiences
with being stable enough to recall memories of previous experiences. The
balance struck between stability and plasticity can have a significant affect
on the accuracy of predictions.

A process called novelty detection is used to determine a measure of
novelty that is proportional to the amount of error in the predictions of the
neural networks. The level of interest in the current area of design space is
calculated from the novelty that is used to produce a reinforcement signal for
the agent’s controller. The goal of a curious design agent is to maximise the
reinforcement signal by seeking out novel situations.

2.3.1 Novelty Detection

The purpose of novelty detection is to identify unexpected or abnormal
situations from examples of normal behaviour. Novelty detection has been
used in domains as varied as medical diagnosis (Tarrasenko, 1995),
industrial ~ plant  monitoring  (Worden, 1997), robot navigation
(Marsland et. al., 2000) and text retrieval (Yang, 1998).

Our implementation of novelty detection uses two Habituated Self-
Organizing Maps (HSOMs) to estimate the novelty of a situation. An HSOM
consists of a standard self-organising map (SOM) with an additional neuron
that outputs the novelty of the current input (Marsland et al., 2000).

A self-organising map consists of a lattice of neurons that are used to
represent different categories of inputs (Kohonen, 1993). Each neuron has an
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associated vector of weights of the same dimension as the inputs. When a
new input is presented to the SOM each neuron compares the similarity of its
weight vector to the inputs. The neuron with the best matching weights is
declared the winner. Learning is accomplished by updating the winner to
reduce the difference between its weights and the inputs. In addition a
neighbourhood of neurons around the winner are updated to reduce the
difference between their weights and the inputs. This process results in a
topographic map of the input space, with similar categories being
represented by nearby neurons.

In an HSOM every neuron in the SOM is connected to the output neuron
by habituating synapses that become less effective at transferring activation
between neurons with use. The more frequently a map neuron fires the lower
the efficacy of the synapse and hence the lower the output of the novelty
detector.

The first HSOM estimates the novelty of a design by categorizing a
representation of the design solution. The second HSOM estimates the
novelty of the performance of the design by categorizing a profile of the
design situation that includes representations of the design solution, the
design problem and an evaluation of the design’s performance.

The inverse of the novelty detected by the first HSOM is used to estimate
the familiarity of a design. The output of the second HSOM is used to
estimate the novelty of the design performance. The novelty of a design
situation is calculated as a product of the familiarity assigned by the first
network and the novelty assigned by the second. Consequently, significant
novelty is only detected when a familiar design has an unfamiliar
performance.

3. DESIGNING VIRTUAL ENVIRONMENTS FOR
SIMULATED PEDESTRIANS

A simple crowd management problem is used to illustrate the behaviour
of our curious design agent. The problem is to design a doorway to facilitate
the efficient and comfortable movement of crowds of pedestrians travelling
in opposite directions. A pedestrian simulator was developed to evaluate
doorway designs. Pedestrian movement is simulated using a microscopic
model of crowd behaviour developed to account for empirically observed
self-organising phenomena.
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3.1 Simulating Pedestrians

Computer models of pedestrian movement have been used to provide
valuable tools for designers when planning or modifying pedestrian areas in
large buildings like railway stations or shopping malls (Major et al., 1998).
The “social force model” is a microscopic model of pedestrian behaviour
that simulates the behaviour of individual pedestrians to model self-
organising phenomena in crowds (Helbing, 1991).

3.1.1 The Social Force Model

Helbing and Molnar (1995) developed the social force model of
pedestrian behaviour to simulate the pedestrian crowd movements to gain a
better understanding of empirical results. The “social forces” in the model do
not represent forces exerted upon a pedestrian; rather they are an
approximation of the internal motivations of the individuals to move in
certain directions. Despite its simplicity, computer simulations have shown
that the social force model is capable of realistically describing several
interesting aspects of collective pedestrian behaviours observed in empirical
studies (Helbing and Molnar, 1997). The social forces modelled in these
experiments are listed in . Detailed mathematical descriptions of
these forces can be found in Helbing and Molnéar (1995).

Table 1. The social forces modelled in the simulations of pedestrian crowds.

Description of social force

1. Pedestrians are motivated to move as efficiently as possible to a destination.

2. Pedestrians wish to maintain a comfortable distance from other pedestrians.

3. Pedestrians wish to maintain a comfortable distance from obstacles like walls.

4.  Pedestrians may be attracted to other pedestrians (e.g. family) or objects (e.g. posters).
3.1.2 Evaluating Virtual Environments

Designs are evaluated using measures of the efficiency and discomfort
for each simulated pedestrian (Helbing and Molnar, 1997). Efficiency is
measured for a pedestrian as the average difference between actual walking
speed during a simulation and desired walking speed. Discomfort is
calculated as a function of the number of direction changes during a
simulation that a pedestrian must perform in order to negotiate the built
environment and other pedestrians.

Like an architect, the primary concern of our design agent is the
“subjective experience” of the simulated pedestrians visiting its
environment. However, it should be stressed that our curious design agent
does not attempt to optimise its designs in the computational sense. Instead
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the design agent is motivated to explore the space of possible designs. It is
equally motivated to investigate good and bad designs, e.g. inefficient
designs can be interesting if their inefficiency is unexpected.

3.2 Experimental Results

This section describes two experiments using the models of interest and
curiosity described above. The first experiment investigated the detection of
novelty as emergent group behaviours affect the performance of three
doorway designs. The second experiment investigated the behaviour of a
curious design agent autonomously exploring the problem and solution
spaces of doorway design.

3.2.1 Experiment 1: Assessing the Novelty of a Two Door Design

To illustrate the performance of the novelty detector, three designs for a
doorway were created. The three doorway designs were for a narrow door, a
wide door, and a combination of two narrow doors, as shown in[Figure 1]
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Figure 1. Screenshots of the simulations of pedestrian flow through (a) a narrow, (b) a wide,
and (c) a double doorway design with a crowd of 40 pedestrians. The black circles indicate
pedestrians travelling from left-to-right across the doorway and the white circles indicate
pedestrians moving from right-to-left.

The doorway designs were tested using different numbers of pedestrians
simultaneously trying to get through the doorway, crowds ranged in size
from 1 to 51 pedestrians in increments of 10. The efficiency and discomfort
measures from the simulations were combined into a single evaluation
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measure for each simulation. The best evaluations of three trials conducted
at each crowd size are shown in
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Figure 2. The best combined efficiency and discomfort evaluations for narrow, wide and
double doorway designs for different crowd sizes (1-51 pedestrians).

All doorways performed equally well with only one pedestrian passing
through it at a time. As the number of pedestrians increases the crowds
display an oscillatory behaviour around doorways where one group of
pedestrians gains control of the whole door at a time. The control of the
doorway switches back-and-forth in direction as the numbers of pedestrians
on either side of the doorway change.

The performance of the narrow doorway design quickly deteriorates to
give consistently bad evaluations as the number of pedestrians increase. The
wide doorway design maintains a very high performance for 11 pedestrians
but its performance reduces dramatically, by almost 30%, as the number of
pedestrians increases to 21. The performance of the wide door degrades
more slowly over as the crowd sizes continue to increase from 31-51
pedestrians.

The performance of the double doorway design degrades even more
slowly than the wide doorway design. For small crowds with less than 11
pedestrians the wide doorway design performs better but as the numbers of
pedestrians increase the double doors outperform the wide door.

The double doorway design’s superior performance in crowded
conditions is a consequence of an emergent organisation. The two doors
become specialised in the transfer of pedestrians moving in a single direction
for relatively long periods of time. This can be seen in the double doorway
simulation shown in[Figure ], pedestrians travelling from left to right pass
through the top door while pedestrians travelling right to left pass through
the bottom door.

The evaluations of each doorway design were presented to the novelty
detector in ascending order of pedestrian numbers. The evaluations of the
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narrow doorway were presented first, the wide doorway evaluations second
and the evaluations of the double doorway were presented last. The best
novelty measures of three trials are presented in
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Figure 3. The greatest novelty detection for narrow, wide and double doorway designs for
different crowd sizes (1-51 pedestrians).

Very little novelty was detected for the narrow doorway design at any
crowd size. This is due to the lack of experiences against which the novelty
detector could compare performances and the fact that the narrow doorway
had consistently bad performance with more than one pedestrian.

The relatively high (~0.6) novelty measure for the wide doorway
simulations with 11, 21 and 31 pedestrians indicate the improved
performance of the wide doorway over the narrow doorway. The novelty of
the wide doorway design drops at larger crowd sizes as the characteristics of
the wide doorway are learned.

The novelty assessments of the double doorway design show very high
novelty measures for simulations using 21 pedestrians, highlighting the
resistance of the double doorway design to the fall in performance suffered
by the wide door. The subsequent levels of novelty for simulations involving
31, 41 and 51 pedestrians reflect the relative differences in evaluations as the
advantages of the double door design are maintained and the characteristics
of the new design are learned.

The results of this experiment show that novelty detection can identify
the most interesting designs without extensive reasoning by comparing the
relative performance of different designs under similar conditions. The same
novelty detector was used in the next experiment to implement models of
interest and curiosity for an autonomous design agent.
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3.2.2 Experiment 2: Curious Problem Finding and Problem Solving

In this experiment a curious design agent was given two conceptual
spaces to explore: a problem space and a solution space. The solution space
was defined by two variables: the number of doors making up the doorway
and the combined width of doors. The problem space was defined by a
single variable: the total number of pedestrians in the two crowds trying to
get through the doorway. All other variables of the simulation remained
constant.

shows the novelty detected over the course of a design session.
The design agent was initially given a narrow doorway as a solution to the
problem of moving a single pedestrian. The novelty of exploring this design
soon decreases as the agent learns to accurately predict the doorway’s
performance, the agent’s interest level quickly falls below its boredom
threshold and it begins to explore the problem and solution spaces for more
interesting situations.
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0.6
0.4

Novelty

0.2
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0 10 20 30 40 50 60 70 80 90 100 110

Trial

Figure 4. The results of using a curious design agent to explore the problem and solution

spaces for doorway design. The chart shows the novelty detected for each simulation trial.

The light shaded regions indicate that the design agent is problem finding and dark shaded
regions indicate that the design agent is problem solving.

shows the design agent switching between searching the
problem and solution spaces as interest in a particular problem or solution
wanes. The chart shows the “tailing-off” of novelty values as the
characteristics of situations are learned. It also shows how the detection of
novelty extends the period that an agent spends searching a particular space,
especially the exploration of the problem space for trials 17-37 and 67-82.

The highest peaks in detected novelty (~0.9) in the first half of the
experiment (up to trial 68) all correspond to simulations using double
doorway designs as these have significantly different characteristics to single
doorway designs initially explored.
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The high peaks in the second half of the chart correspond to simulations
using wide doorway designs. This change in fixation occurs when the
interest in double doorway designs subsides. In the second half of the design
session the design agent is discovering an array of interesting situations
where a wide door does not perform in the same way as a double door. At
lower numbers of pedestrians the wide doorway does better than the double
doorway, while at higher numbers of pedestrians it performs worse. Either
way, the design agent finds situations involving wide doorway designs novel
and maintains a higher level of interest in exploring this area of the design
space than would otherwise be expected.

The change in fixation of the design agent from double to wide doorways
illustrates a difference in exploration between a more conventional
optimisation approach and one based on curiosity. The curious design agent
did not explore the situations using wide door designs because they
performed better than the double door designs. Instead, it explored the space
of wide door designs because they did not perform as expected from
previous experiences of the similar-yet-different double door designs.

4. DISCUSSION

The experimental work described has investigated models of interest and
curiosity using processes that detect the novelty of similar-yet-different
design situations. Experiment 1 showed that novelty detection could be used
to identify interesting situations where unexpected emergent properties play
an important role in the evaluation of designs. Experiment 2 showed that
using this model of interest a curious design agent can autonomously explore
problem and solution spaces to identify interesting design situations.

Future experiments will include investigations of curious design agents
applied to more complex design tasks. For example, a natural progression is
to apply curious design agents to the design of large public spaces like train
stations where frequent interactions between pedestrians and the resulting
emergent group behaviours have a significant impact on the performance of
the space.

The ultimate goal of this work is to develop design agents that can assist
an architect explore the issues involved in complex design tasks. Architects
increasingly face the problem of “information overload” as they try to
explore complex design spaces for innovative solutions. Although generative
design tools relieve some of the burden of designing, they can make the
problem of information overload worse as designers attempt to understand
the significance of the designs produced. Technologies similar to curious
design agents may play an important role in future CAAD systems by
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reducing the number of designs presented to an architect to a subset of those
that are judged to be potentially interesting.

Providing design agents with motivations that reward the discovery of
interesting designs more closely matches the motivations behind human
exploration of design spaces. The application of curious design agents may
allow future CAAD systems to provide more natural and rewarding
collaborative partnerships between designer and machine.
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