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Abstract 

Creative products are generally recognised as satisfying two requirements: firstly they 
are useful, and secondly they are novel. Much effort in AI and design computing has 
been put into developing systems that can recognise the usefulness of the products 
that they generate. In contrast, the work presented in this thesis has concentrated on 
developing computational systems that are able to recognise the novelty of their work. 
The research has shown that when computational systems are given the ability to 
recognise both the novelty and the usefulness of their products they gain a level of 
autonomy that opens up new possibilities for the study of creative behaviour in single 
agents and the emergence of social creativity in multi-agent systems. 

The work presented in this thesis has developed a model of curiosity in design as 
the selection of design actions with the goal of generating novel artefacts. Agents that 
embody this model of curiosity are called “curious design agents”. The behaviour of 
curious design agents is demonstrated with a range of applications to visual and non-
visual design domains. Visual domains include rectilinear drawings, Spirograph 
patterns, and “genetic artworks” similar to the work of Karl Sims. Non-visual 
domains include an illustrative abstract design space useful for visualising the 
behaviour of curious agents and the design of doorways to accommodate the passage 
of large crowds. The design methods used in the different domains show that the 
model of curiosity is applicable to models of designing by direct manipulation, 
parametric configuration or by using a separate design tool that embodies the 
generative aspects of the design process. 

In addition, an approach to developing multi-agent systems with autonomous 
notions of creativity called artificial creativity is presented. The opportunities for 
studying social creativity in design are illustrated with an artificial creativity system 
used to study the emergence of social notions of whom and what are creative in a 
society of curious design agents. Developing similar artificial creativity systems 
promises to be a useful synthetic approach to the study of socially situated, creative 
design. 
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Chapter 1  

Introduction 

This thesis is concerned with the computational modelling of creativity. 
Consequently, it is also concerned with one of the oldest questions raised about 
computers: Can computers be creative? Objections to the notion that computers could 
ever be creative pre-date by over a century the invention of the first practical 
computers with which to investigate the question empirically. Famously, Ada 
Augusta, Countess of Lovelace, commented upon her translation of Menabrea’s 
“Sketch of the Analytical Engine”, declaring that: “The Analytical Engine has no 
pretensions whatever to originate anything. It can do [only] whatever we know how to 
order it to perform” (emphasis added by Boden, 1990). In Lady Lovelace’s opinion, 
any creative products of the Analytical Engine would have to be credited not to the 
engine, but to the engineer. 

Turing recognised the importance of creativity in any definition of intelligence 
when he attempted to answer Lovelace’s objection in his seminal paper “Computer 
Machinery and Intelligence”, the same paper in which he introduced his now famous 
test for machine intelligence (Turing, 1950). Turing suggested that objections to the 
possibility of computers being creative of the type put forward by Lady Lovelace 
were based on a common misunderstanding of the nature of reasoning in the mind, 
resulting in an over-statement of the powers of rational thought. In particular, Turing 
pointed out that a person knowing a set of facts and rules about the world does not 
mean that the person immediately knows all of the implications of applying the rules 
to the facts. 

Turing suggested that a better variant of Lovelace’s objection would be that a 
machine can never ‘take us by surprise’ but he then proceeded to declare that 
computers often surprised him because of his own faulty understanding of what he 
had ‘order them to perform’. In making this argument Turing tried to show that the 
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engineer would be no more responsible for the creativity of a machine than the 
machine itself because the engineer could not predict the creative behaviour at design 
time. Turing’s argument does not provide us with much information about the 
possible processes involved in creative thinking but it does highlight the importance 
of emergence, novelty, and surprise in computational models of creativity. 

To be able to study machine creativity within the scope of a single thesis, it is 
necessary to restrict the discussion to address more limited questions than whether 
computers can be creative. Following the lead of Turing, and more recently Boden 
(1990), two questions are asked here. Firstly, can computers model being ‘surprised’? 
Secondly, can the novelty of a surprising discovery motivate the production of 
creative works? 

1.1 MOTIVATIONS 
The initial motivation for this research has come from existing computational models 
of creativity that lack the ability to recognise the novelty of their works. Often 
computational models rely on generative mechanisms to produce ‘interesting novelty’ 
without any means of checking that this is the case other than referring to a human 
supervisor. Models of scientific and mathematical discovery include heuristics to 
guide their search processes by determining the interestingness of concepts but these 
have been shown to be inadequate in systems such as Lenat’s AM which still required 
user interaction to produce creative works (Colton et al., 2000a). An objective of this 
work is to develop a general-purpose heuristic to guide the exploration of conceptual 
spaces in search of novelty. 

A second motivation for this research comes from studies of creative designing 
showing the importance of reflecting upon work during the design process. Studies of 
designers at work have emphasised the interactive nature of designing. Schön calls 
this style of working ‘reflection-in-action’ and suggests that the processes involved 
are critical in many types of problem-solving (Schön, 1983). Models of designing 
based on Schön’s studies place great emphasis on a designer’s attendance to the 
emergence of unexpected consequences of design actions (Schön and Wiggins, 1992; 
Suwa et al., 1999). To model reflection-in-action design agents must be able to 
recognise unexpected consequences of their actions. An initial model of reflective 
sketching is given at the beginning of Chapter 5. 

A final motivation comes from the view that creativity is a social-cultural 
construct, i.e. an honorific label assigned by peers and historians. In this view, 
creativity cannot be modelled as a closed system within a single agent: instead 
creativity must be modelled in the context of a society. Csikszentmihalyi1 (1988; 
1999) has been a vocal critic of computational models of creative thinking for not 
taking into account the effect that society has on the creative agent. The work 
presented towards the end of this thesis is an initial attempt to integrate some of 
Csikszentmihalyi’s observations into an abstract computational framework for 

                                                 
1 Pronounced “chicks-sent-me-high”. 
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studying creativity. It is facilitated by the autonomy of curious design agents that 
permits the construction of artificial societies in which to situate creative activity. 

1.2 AIMS AND OBJECTIVES 
The aim of this research is to develop an understanding of the role that curiosity plays 
in creative thinking and creative design. To achieve this aim the following objectives 
were set: 

1) To identify a computationally applicable notion of interestingness that 
captures what is meant when something is said to be novel or 
surprising. 

2) To develop computational processes that can model interest and 
boredom based on this notion of interestingness. 

3) To develop a model of curiosity that uses interest and boredom and 
that can be used to guide the actions of a design agent. 

4) To develop a computational architecture for developing curious design 
agents that incorporates the processes of curiosity. 

5) To investigate the behaviour of curious design agents in different 
situations for a number of design domains. 

1.3 OVERVIEW OF THESIS 

1.3.1 Background 
Chapter 2 briefly reviews previous theoretical and computational models of creativity. 
The majority of Chapter 2 is spent examining the theoretical aspects of Berlyne’s 
work on the perception of novelty and its effects on the behaviour of organisms. 
Different forms of novelty are described together with the related concepts of surprise, 
incongruity, and uncertainty and their relationship to expectations, conflict, and the 
perception of complexity. Berlyne’s model of arousal and its relationship to 
judgements of aesthetics is also covered, importantly Berlyne’s theory predicts that 
the most interesting novelty will be found in artefacts that are similar-yet-different to 
more familiar works. Berlyne’s theory of curiosity is presented to differentiate the 
types of behaviours that can arise from the perception of novelty. Finally, some recent 
work developing computational models of curiosity is presented. Computational 
models have been developed to investigate the benefits of incorporating curiosity in 
autonomous learning systems, in particular, software agents and mobile robots. 

1.3.2 A Computational Framework for Curious Design Agents 
The first half of Chapter 3 describes a computational framework for developing 
curious design agents. The chapter begins with a functional description of a general-
purpose agent framework. The addition of a curiosity module is shown to be a 
relatively small task requiring the modification of few existing processes. The second 
half of Chapter 3 describes the development of multi-agent simulations involving 
curious design agents and how this can be used to model Csikszentmihalyi systems 
view of creativity thanks to the insights of Liu (2000). 
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1.3.3 Implementing Curiosity 
Chapter 4 provides some implementation details of the common components found in 
the curious design agents described later. In particular, the implementation and 
behaviour of the neural networks used to implement long-term memory are examined 
to give some indication of how they might affect curious agent behaviour. The 
essential process of novelty detection is described and two implementations are 
presented. 

1.3.4 Applications 1: Curious Design Methods 
The first chapter of applications, Chapter 5, demonstrates curious design agents in 
visual design domains using three different design methods: direct manipulation, 
parametric configuration and design tool-use. Each application is described in a 
separate section that begins with a brief account of the motivation to develop an agent 
for the chosen domain; continues with domain-specific implementation details; some 
experimental work to examine curious behaviour; and finishes with an application 
specific discussion of the results and potential directions for future work. The 
collection of agents described in this chapter shows that curiosity is a general-purpose 
search heuristic that can be applied to agents that design using different levels of 
abstraction in the design process. 

1.3.5 Applications 2: Designing for Other Agents 
Chapter 6 presents two more applications of curious design agents that examine 
different aspects of curiosity in design. The first application uses a simulation of 
crowd behaviour to examine the design behaviour of a curious agent in a non-visual 
domain. It also demonstrates the ability of a curious design agent to use the onset of 
boredom as a trigger to switch between problem-solving and problem-finding. The 
second application builds on the work done to develop a tool-using design agent in the 
previous chapter to develop a multi-agent simulation of a creative system, called The 
Digital Clockwork Muse, using the artificial creativity framework described in 
Chapter 3. Experiments with the simulation show the emergence of social definitions 
of whom and what are creative and the development of ‘creative cliques’ consisting of 
agents with similar notions of what is creative. 

1.3.6 Discussion and Conclusion 
The final two chapters discuss the possibilities for developing future curious design 
agents: additional functions for curious design agents are discussed; the possible 
application of curious design agents in CAD systems is examined; and the exciting 
promise of artificial creativity systems to provide insights into the social nature of 
creative designing is elaborated with some possible directions for future artificial 
creativity simulations. 



 5

Chapter 2  

Background 

2.1 WHAT IS CREATIVITY? 
Creativity is the ability to produce work that is novel and appropriate. 

There have been many attempts to be more specific than to define creativity as the 
ability to produce work that is novel and appropriate, Taylor (1988) gives some 50 
definitions, but this simple statement appears to be the only definition upon which 
there is a consensus among the research community (Boden, 1990; Partridge and 
Rowe, 1994; Rosenman and Gero, 1993; Sternberg, 1988; 1999). 

The purpose of studying creativity is often to determine what processes are 
involved in being creative or finding out what is meant when something is described 
as being novel (original, unexpected, surprising) and appropriate (useful, valuable, 
aesthetic, adapted). 

2.1.1 Approaches to Studying Creativity 
Many different approaches have been taken in studying creativity (Sternberg, 1988). 
Theoretical models have been proposed to provide more detailed accounts of the 
processes involved in creativity, e.g. Dewey (1910), Poincaré (1913), Wallas (1926), 
Guilford (1967), Koestler (1964), Hofstadter (1979); de Bono (1986), Martindale et 
al. (1988), Boden (1990), Finke et al. (1992), and Dacey and Lennon (1998).  

Empirical studies of problem-solving and other creative tasks have been 
conducted to determine the characteristic traits of creative people and creative 
processes, e.g. Guildford (1967), Simonton (1997), Schön (1983), Sternberg (1988), 
Gardner (1993), and Csikszentmihalyi (1996a; 1996b). Amabile has conducted 
extensive studies of motivation in creative individuals and has found that intrinsic 
motivations play an essential role (1983; 1985; Collins and Amabile, 1999). 
Martindale’s studies of the development of creative styles places the desire to find 
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novelty in the unusual position of being one of the few constant motivations in 
creative work (Martindale, 1990). 

Studies of preference judgements for creative artefacts have been provided 
insights into the nature of creative works, e.g. Berlyne (1971), Humphrey (1973), 
Whitfield and Wiltshire (1982), Gaver and Mandler (1987), Martindale et al. (1988), 
Martindale (1990). Many of these studies show that novelty plays a crucial role in the 
preference judgements of individuals, and that these preference judgements change 
with exposure to examples of a style. 

2.1.2 Personal and Social Views of Creativity 
Approaches to studying creativity can be divided into two broad categories. Firstly, 
there are those that emphasise personal judgements of creativity and study creative 
thinking and creative personalities. Secondly, there are those approaches that 
recognise that creativity goes beyond the individual and that society, as the audience 
of the creative work, plays an important role in defining what is creative. 

The first approach to studying creativity has resulted in models of creative 
thinking (e.g. Wallas, 1926; Newell et al., 1962; Koestler, 1964; Martindale et al., 
1988; Boden, 1990; Finke et al., 1992; Dacey and Lennon, 1998). Most computational 
models of creativity are based, either directly or indirectly, on these process models of 
creative thinking (e.g. Langley et al., 1987; Hofstadter et al., 1995a; Partridge and 
Rowe, 1994). 

Proponents of the second approach contend that creativity cannot occur in a 
vacuum and must be studied in the context of the socio-cultural environment of the 
creator (Csikszentmihalyi, 1988; 1999). This definition has been popular in fields that 
consider the creativity of multiple individuals over extended periods of time, for 
example, in history, sociology and anthropology (Martindale, 1990). 

2.1.2.1 Unified Models of Creativity 
Some researchers have attempted to combine these two views of creativity into 
unified theoretical frameworks but the resulting frameworks often maintain the 
distinction between personal and socio-cultural notions of creativity, as with 
Gardner’s small-c and big-c creativity (Gardner, 1993) and Boden’s P-creativity and 
H-creativity (Boden, 1990). 

Boden (1990) classifies creativity as either historical creativity (H-creativity) or 
psychological creativity (P-creativity). P-creative ideas are novel with respect to an 
individual’s experiences; H-creative ideas are novel with respect to the whole of 
human history. H-creativity presupposes P-creativity, if an individual has an idea that 
is historically novel then it must also be novel to that individual as well as to others. 
Gero has extended Boden’s classification to include situated creativity (S-creativity). 
S-creative ideas are novel with respect to the situation of an individual emphasising 
the important role that context plays in shaping the creative process (Suwa et al. 
1999). 
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2.1.2.2 A Systems View of Creativity 
Csikszentmihalyi (1988) presented a different approach to studying creativity by 
considering the interactions between individuals, society and culture. When 
Csikszentmihalyi developed his systems view of creativity, he turned his attention 
away from the question “What is creativity?” and focussed upon the issues 
surrounding the question “Where is creativity?” Importantly, Csikszentmihalyi 
questioned the mentalistic assumption that creative processes are only to be found in 
the mind of the creative individual. Instead he proposed that processes essential to 
creativity, whether personal or socio-culturally defined, are to be found in the 
interactions between individuals and the society that they are situated within. 

The systems view of creativity was developed by Csikszentmihalyi as a model of 
the dynamic behaviour of creative systems that include interactions between the major 
components of a creative society (Csikszentmihalyi, 1988). Csikszentmihalyi 
identified three important components of a creative system; firstly there is the 
individual, secondly there is a cultural, or symbolic, component called the domain, 
and thirdly there is a social, or interactive, component called the field. A map of the 
systems view of creativity is presented in Figure 2.1. 

 
Figure 2.1: Csikszentmihalyi’s systems view of creativity (after Csikszentmihalyi, 

1999). 

An individual’s role in the systems view is to bring about some transformation of 
the knowledge held in the domain. The field is a set of social institutions that selects 
from the variations produced by individuals those that are worth preserving. The 
domain is a repository of knowledge held by the culture that preserves ideas or forms 
selected by the field. 

In a typical cycle, an individual takes some information provided by the culture 
and transforms it, if the transformation is deemed valuable by society, it will be 
included in the domain of knowledge held by the culture, thus providing a new 
starting point for the next cycle of transformation and evaluation. In 
Csikszentmihalyi’s view, creativity is not to be found in any one of these elements, 
but in the interactions between them. 
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2.2 COMPUTATIONAL MODELS OF CREATIVITY 
Developing computational models of creativity is a relatively recent approach that is 
closely associated with artificial intelligence (AI) and cognitive science (Langley et 
al., 1987; Partridge and Rowe, 1994; Boden, 1999). Developing computational 
models of creativity can potentially do three things (Elton, 1995): 

1) Produce computational systems that produce novel and appropriate 
works, e.g. scientific theories, musical compositions, architectural 
designs etc. 

2) Contribute to the cognitive sciences as it seeks to understand the 
mechanisms involved in human creative thinking, e.g. analogy-
making, emergence etc. 

3) Provide abstract models of creativity that are not tied to a specific 
domain or process for the study of creativity in its most general sense. 

In accordance with the definition of creativity given earlier, computational models 
of creativity are often assessed against the first of these goals: the ability to produce 
novel and appropriate works. In some cases the performance of computational 
systems has been measured against works that have been considered creative in the 
past (Langley et al., 1987), in other cases the creativity has been assessed against the 
state-of-the-art in a domain (Lenat, 1983). 

2.2.1 Computational Approaches 
This section presents some successful computational systems to illustrate some 
different computational approaches to modelling creativity. 

2.2.1.1 Grammar-Based Systems 
Rule-based systems have been a popular way to encode knowledge in both AI and 
design computing. A carefully constructed set of rules constitutes a grammar that can 
guarantee the production of appropriate works within a style. For example, take the 
shape grammar for generating Frank Lloyd Wright’s Prairie Houses (Koning and 
Eizenberg, 1981). The Prairie House grammar was constructed by careful study of 
Frank Lloyd Wright’s designs and extracting the complex relationships between 
design elements as rules. The grammar could then be used to generate new houses in 
the same style as Lloyd Wright. The results of such a system are often excellent 
examples of the style, but they are formulaic; they lack the originality that a creative 
talent like Lloyd Wright would introduce. There is nothing in the system of rules that 
can motivate the shift from Prairie Houses to Waterfall to a Guggenheim Museum. 

Schnier and Gero have produced evolutionary design systems (see Section 2.2.1.3) 
that can learn the style of Lloyd Wright’s buildings by identifying the ‘building 
blocks’ that define the style, thus avoiding the need to hand craft a production 
grammar (Schnier and Gero, 1996; Schnier, 1999).  They have used these systems to 
generate highly innovative designs, as they did when they combining learned patterns 
for Frank Lloyd Wright window designs with those learned for Mondrian paintings – 
producing original Flondrians (Schnier, 1999). But as before, the motivation for this 
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undoubtedly creative combination came from the developers and not from any 
intrinsic motivation of the system to explore new possibilities.  

2.2.1.2 Discovery Systems 
Some of the earliest computational models of creativity were developed as models of 
scientific and mathematical discovery. The history of discovery systems stretches 
back to the beginnings of AI with Newell and Simon’s pioneering work developing 
the Logic Theorist (Crevier, 1993). The 1960’s saw the development of the first expert 
system for scientific hypothesis formation: DENDRAL (Lindsay et al., 1993) and in 
the 1980’s a milestone was reached with the BACON family of scientific discovery 
programs (Langley et al., 1987). 

Simon claimed that BACON family of programs should be considered creative 
because they could replicate the solutions to some of the most creative problems in 
science, but Csikszentmihalyi has argued that these programs are more like forgers 
and that as such they cannot be considered creative (Csikszentmihalyi, 1988). 
Csikszentmihalyi’s argument emphasises the need for a creative system to produce 
novel works and not just reproduce previously novel works because in many of the 
cases of scientific discovery, finding the right problem, or asking the right questions, 
is more important than finding solutions (Einstein and Infeld, 1938). Csikszentmihalyi 
argues that because the discovery systems were developed with the intention of 
solving a specific problem and given all of the necessary knowledge to do so, they 
cannot claim the creativity of the original discoveries. 

The beginning of the 80’s also saw Lenat develop the Automated Mathematician 
(AM). Lenat (1976) claimed that AM was creative because it developed several new 
and interesting concepts, however, the creativity of AM is also problematic (Lenat 
and Brown, 1984; Ritchie and Hanna, 1984; Rowe and Partridge, 1993; Boden, 1999). 
Despite having many heuristics dedicated to determining the interestingness of 
concepts, AM would produce many concepts that human mathematicians would 
consider uninteresting and it required user intervention to identify the most promising 
directions for exploration, as Lenat himself noted “the very best examples of AM in 
action were brought to full fruition only by a human developer” (Davis and Lenat, 
1982). 

Lenat attributed the limitations of AM to the fixed nature of its heuristics (Lenat 
and Brown, 1984) and his later work developing EURISKO tried to address this by 
using meta-heuristics to generate new heuristics as needed. EURISKO had some 
considerable success and produced several innovations including one that was 
awarded a U.S. patent (Boden, 1999). Despite its successes, EURISKO has not been 
widely used, largely because it relied upon many domain-specific heuristics that 
required considerable effort to produce. 

Work has continued to develop scientific and mathematical discovery systems, 
and new approaches, like Inductive Logic Programming (ILP), have seen real success 
when applied to narrowly defined domains (Colton and Steel, 1999). One of the most 
exciting developments has been that of closed-loop discovery systems, as originally 
demonstrated by Hayes-Roth (1983). In closed-loop systems, a computer is provided 
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with the means to plan and perform experiments to test hypotheses without human 
intervention (e.g. Bryant et al., 1999). These systems show one way forward for 
developing autonomous models of discovery, but one that has as much to do with 
solving domain-specific problems as studying the nature of creativity. 

2.2.1.3 Generate-and-Test Systems 
One of the most common approaches to modelling creativity is to use one generative 
function to produce a number of solutions and then select the best from that set using 
an evaluation function: implementing a generate-and-test cycle similar to the 
incubation and illumination processes of Wallas’ theoretical model (1926). Typically, 
computational models of creativity that use a generate-and-test cycle break the task of 
producing potentially creative products into two: (1) generate novel products, and (2) 
test products for appropriateness. 

The generate-and-test approach is typified by use of evolutionary systems in art 
and design. Evolutionary algorithms have been applied with great success to a wide 
range of creative design problems (Bentley, 1999d). Evolutionary design systems use 
a set of genetic operators to generate genetic representations that are expressed into 
designs and evaluated for their usefulness using a fitness function. Evolutionary 
systems have been used in many design applications including the design of 
electronics (Koza et al., 1999; Thompson, 2000), mechanical systems (Eby et al., 
1999), buildings (Rosenman, 1996; Bentley, 1999c), furniture (Bentley, 1999c), 
artworks (Sims, 1991; Todd and Latham, 1992; Witbrock and Reilly, 1999), and even 
artificial lifeforms (Lipson and Pollack, 2000). The success of evolutionary design 
systems has resulted in some researchers speculating that they model creativity (e.g. 
Goldberg, 1999), although most commentators are justly cautious and do not make 
such claims without some reservations (e.g. Bentley, 2000). 

Connectionist systems implementing a generate-and-test model of creativity have 
also had considerable success (Thaler, 1996). Boden (1990) suggests that 
connectionist systems have several qualities, such as robustness in the face of noise, 
that make them a good choice for developing computational models of creativity. 
Other commentators appear to agree that neural networks offer a level of flexibility 
that is beneficial (e.g. Clark, 1994). 

2.2.2 Criticisms of Computational Models 
Despite the success of the above systems, several researchers have argued that these 
systems do not model creativity because they cannot successfully recognise the 
creativity of their own work (Csikszentmihalyi, 1988; Boden, 1990; Elton, 1995). In 
Elton’s view, meaningful evaluation is all-important in the assignment of creativity, 
he states that: “Generation, however masterful, without evaluation just does not count 
as creativity.” Elton’s solution to the problem is to develop computational systems 
that have enough cultural knowledge that they can evaluate the novelty of their own 
work to determine whether it counts as being creative (i.e. in the sense of Boden’s P-
creative). 
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2.3 NOVELTY 
To develop design agents that can evaluate the creativity of their works we need to 
develop the means to evaluate the novelty of those works. The subjective evaluation 
of novelty is quite different from that of usefulness: a creative product is likely to 
remain useful for some time but it loses its novelty as soon as it is experienced. This 
makes the application of fixed heuristics to determine novelty inappropriate, as was 
demonstrated by the continued reliance of AM and EURISKO on human assistance. 

Berlyne conducted extensive research into the effects of perceiving novelty on the 
behaviour of humans and animals (Berlyne, 1960) and their roles in the judgement of 
aesthetics (Berlyne, 1971).  

This section presents a very brief introduction to the work of Berlyne and other 
experimenters interested in studying novelty and related concepts of interestingness, 
and curiosity. Berlyne’s theories of novelty are presented first before examining some 
previous attempts to model curiosity in computational systems. Berlyne identified 
several dimensions for differentiating types of novelty that capture on the 
comparative, temporal, and epistemic properties of novel stimuli. 

2.3.1.1 Dimensions of Novelty 
One of the most important distinctions between different types of novelty is between 
novelty that is due to atypical stimuli and novelty due to a stimuli being uncommon: 

• Atypical stimuli are unlike previous experiences. The novelty of an 
atypical stimulus lies in the differences between it and the nearest 
matching previous experiences, or the improbability of its appearance 
given previous experiences of similar stimuli. 

• Uncommon stimuli are familiar from previous experiences but are 
rarely experienced or have not been experienced for some time. The 
novelty of an uncommon stimulus comes from the improbability of the 
experience. 

Another difference between forms of novelty is the timeframe over which the 
novelty is detected. Berlyne (1960) distinguishes between immediate, short-term and 
long-term novelty: 

• Immediate novelty is the novelty of an experience at an instance. The 
immediate novelty of a stimulus, such as a visual pattern, is based on 
the elements present in the sensory field. 

• Short-Term novelty is the novelty of an experience relative to recent 
experiences. The short-term novelty of a sequence of stimuli, such as a 
melody, is based on the contents of short-term memory. 

• Long-Term novelty is the novelty of an experience relative to 
experiences that may be hours, days or years old but that have left a 
trace in long-term memory. 
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In addition Berlyne (1960) differentiates between perceptual and epistemic forms 
of novelty: 

• Perceptual novelty is defined in relation to perceptions. The perceptual 
novelty of a stimulus is based on the comparison of non-symbolic 
properties of the stimulus. 

• Epistemic novelty is defined in relation to knowledge. The epistemic 
novelty of a stimulus is based on a comparison of the meaningful 
associations that it connects with in the mind of the observer. 

To clarify, perceptual novelty is the sort of novelty that draws one’s attention to a 
stimulus without requiring the stimulus to be identified as something of a particular 
type. Epistemic novelty requires that the stimulus be recognised as being of a certain 
type before the novelty can be appreciated. 

2.3.2 Degree of Novelty 
Intuitively, the degree to which a stimulus pattern is novel will be inversely 
proportional to: 

1) How often similar patterns have been experienced. 

2) How similar these patterns have been. 

3) How recently these patterns have been experienced. 
Computationally, novelty is detected using processes that estimate one or more of 

these properties for a given stimulus pattern and a representation of previous stimuli. 

2.3.3 Novelty Related Concepts 
Some concepts are naturally related to novelty, in some cases so much so that they are 
commonly considered synonymous. These related concepts are worth considering 
separately as they provide different opportunities for generating interesting novelty in 
creative works and require different mechanisms to recognise them. 

2.3.3.1 Surprise 
A surprising stimulus is not just atypical or uncommon; it is a stimulus that disagrees 
with one or more expectation (Berlyne, 1960). Surprise involves anticipation of an 
experience that is not fulfilled by the actual experience that follows. The degree of 
surprise depends upon the confidence put in the expectation and the degree to which 
the expectation is confounded. As Berlyne (1971) notes, it is sometimes hard to 
convince people that surprisingness is not the same thing as novelty, but they are 
distinct and something can be surprising without being novel and vice versa. The 
difference between novelty and surprise is nicely illustrated by the following extract 
written over 200 years ago: 

… an elephant in India will not surprise a traveller who goes to see one; and yet its 
novelty will raise his wonder: an Indian in Britain could be much surprised to stumble 
upon an elephant feeding at large in the open field; but the creature itself, to which he 
was accustomed, would not raise his wonder. 

(Home, 1795; quoted in Berlyne, 1971 pp. 146) 
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2.3.3.2 Incongruity 
When a stimulus sets up an expectation that is not satisfied within the same 
experience, it is said to be incongruous rather than surprising. The difference between 
surprising and incongruous experiences is blurred by the sequential nature of many 
sensory experiences, such as the scanning of visual patterns. An incongruous stimulus 
can be constructed by substituting an element of a familiar stimulus with one that is 
unexpected or unfamiliar. 

2.3.3.3 Uncertainty 
Uncertainty arises when there is no clear response to a stimulus. Stimuli that cause 
uncertainty may either be too distant from familiar experiences to be classified with 
confidence or may evoke multiple responses equally by falling somewhere between 
them. The concepts involved in uncertainty are likely to be similar. For example, 
consider trying to identify a shade of colour that is a mixture of red and pink, the 
result is likely to be uncertain, resulting in descriptions such as “reddish-pink” or 
“pinkish-red”, neither of which give a clear indication of the actual colour. 

2.3.4 Conflict 
Conflict is a super-ordinate concept related to surprise, incongruity and uncertainty, 
capturing the common pattern of response found in all three (Berlyne, 1971, pp. 150). 
Conflict is caused by a stimulus simultaneously evoking multiple responses that 
compete for dominance. The degree of conflict will depend upon the confidence of 
the competing responses. 

2.3.5 Expectations 
Expectations obviously play an important role in the perception of surprising and 
incongruous stimuli. Expectations can be formed in three main ways. The most 
common way is through the repeated experience of combinations of stimuli or 
sequences of events. Classical conditioning then leads the perception of a stimulus, X, 
to evoke an expectation of a response that usually accompanies or follows it, Y. The 
strength of the expectation will reflect the reliability with which Y can be predicted 
given X, i.e. p(Y|X). Secondly, expectations of something can be formed on the 
advice of a reliable information source. Finally, expectations can be formed through a 
reasoning process. 

2.3.6 Complexity 
In general, the more novelty a stimulus presents the more complex it will appear to be, 
however, complexity does not imply novelty: a highly complex stimulus, such as a 
natural scene or an intricate design, is not necessarily novel. Martindale (1990) 
proposed that the continuous search for novelty in art and design styles would 
naturally lead to an increase in the complexity of works within the style over time. 
According to Martindale, stylistic changes happen when the complexity of works 
within a style become too high to be intelligible at which point a new style has the 
chance to become popular as a simpler, yet novel, alternative. 
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2.4 INTERESTINGNESS 
What’s interesting? Schmidhuber (1997) answers this question by writing 
“Interestingness depends on the observer’s current knowledge and computational 
abilities. Things are boring if either too much or too little is known about them – if 
they appear either trivial or random.” Interestingness is obviously closely tied with 
learning and this can explain why truly creative works often require great efforts on 
the part of the creator to educate the potential audience in order for them to appreciate 
the creativity of the work (Csikszentmihalyi, 1988). 

2.4.1 Objective and Subjective Notions of Interestingness 
Silberschatz and Tuzhilin (1996) suggest that interestingness can be either objective 
or subjective: objective interestingness uses relationships found entirely within the 
object considered interesting, while subjective interestingness compares properties of 
the object with beliefs of a user to determine interest. Two aspects that make 
something subjectively interesting are that it is unexpected and/or actionable. 
Unexpectedness depends upon an agent’s ability to predict an as-yet-unseen event. 
Actionability depends upon whether an agent can take action as a consequence of a 
discovery. The two concepts are conceptually independent although Silberschatz and 
Tuzhilin note that unexpected discoveries are often actionable. Silberschatz and 
Tuzhilin’s definitions of interestingness are compatible with Berlyne’s definitions of 
novelty and surprise. This work is concerned with subjective notions of 
interestingness in creative design: an interest in the unexpectedness of novel artefacts 
and the curious design actions that result. 

2.4.2 Hedonic Value 
Interest can be considered a special case of “hedonic value” associated with the 
pleasure associated with heightened states of learning. To describe the response to 
arousing stimuli, Berlyne (1971) coined the term “hedonic value”, in reference to the 
pleasure/pain response that is often associated with arousal. Berlyne’s model of the 
relationship between arousal and hedonic value uses a non-linear function that 
resembles an inverted U-shape called the Wundt curve (Berlyne, 1971). The Wundt 
curve is name after the pioneering experimental psychologist Wilhelm Wundt; it is 
sketched in Figure 2.2. 

 
Figure 2.2: The Wundt Curve: a hedonic function used to calculate interest. The hedonic 
function is shown as a solid line, the reward and punishment sigmoidal curves summed 

to form the hedonic function are shown dashed. 
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Importantly, the maximum value of the Wundt curve is often located in a narrow 
region close to zero. In the case of interestingness, the shape of the Wundt curve 
means that the most interesting experiences are those that are similar-yet-different to 
those that have been experienced previously. Berlyne’s model is supported by 
empirical evidence gathered from studies of aesthetic preference and creative 
thinking. Berlyne proposed that his model of arousal is also the basis of behaviour 
commonly referred to as ‘curiosity’. 

2.5 CURIOSITY 
Berlyne (1971) defines curiosity as a form of motivation that promotes exploratory 
behaviour to learn more about a source of uncertainty, such as a novel stimulus, with 
the goal of acquiring sufficient knowledge to reduce the uncertainty. 

2.5.1 Exploratory Behaviour 
Berlyne (1971) presented two types of motivations for exploration, diversive and 
specific, in keeping with his model of hedonic reward. In diversive exploration, an 
organism is under-stimulated and seeks arousal from the environment. In specific 
exploration, an organism is over-stimulated and seeks to reduce its arousal by 
reducing the novelty of the situation and its associated collative variables, in 
particular, uncertainty. 

Berlyne (1960) proposed three mechanisms of exploratory behaviour observed in 
higher mammals: orientation, locomotion and investigation. 

• Orientation: An animal will orient itself towards an object of interest 
in order to gain more information about it. 

• Locomotion: An animal will move towards an object of interest in 
order to gain more information. 

• Investigation: An animal will affect changes in an object of interest to 
gain information. 

In design, we are mostly interested with the third type of exploratory behaviour, 
where new designs are developed to investigate imagined possibilities motivated by 
curiosity in an existing design, however, the first two types of exploratory behaviour 
may also be important, especially in the early stages of design when little is known 
about a design problem and useful information can be gained more readily from 
inspecting existing designs than from generating new ones. 

In any case, whether motivated by diversive or specific needs, and implemented 
through orientation, locomotion or investigation, the goal of such exploratory 
behaviour is to gain knowledge and this typifies curious behaviour. As Schmidhuber 
(1991b) comments: “One gets curious as soon as one believes that there is something 
that one does not know.” As this statement can include both diversive and specific 
motivations, if one makes the reasonable assumption that there is always something 
more to learn. 

2.5.2 Agents 
Agents have become a popular vehicle for artificial intelligence (Franklin, 1997a; 
1997b). Although a precise definition of what constitutes an agent remains elusive 
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(Wooldridge and Jennings, 1995; Franklin and Graesser, 1996; Nwana, 1996; 
Wooldridge, 1999), one aspect of agency that is generally agreed upon is that agents 
are autonomous, i.e. that they can operate without assistance in complex 
environments. 

The level of autonomy is an important topic in agent research. In the last decade 
agent research has shown that representations grounded in the experience of an agent 
are more useful for dealing with complex environments. Agents that develop their 
own representations of the world in terms of their interactive experiences are called 
situated, they go beyond the operational autonomy found in other agents and gain a 
level of epistemic autonomy (Ziemke, 2000). Curious agents need to situate their 
experiences of design domains so that they can determine the novelty of new design 
products. 

2.5.2.1 Curious Agents 
Schmidhuber (1991b) discussed the possibilities for implementing curiosity and 
boredom in model-building neural controllers for autonomous agents. Schmidhuber 
has demonstrated with a number of autonomous agents that engage in self-directed 
learning in complex environments that curiosity can be very effective in guiding the 
exploration of dynamic environments (Schmidhuber, 1991a; 1991b; 1991c; 1997). 
Schmidhuber implemented curious agents using neural controllers and reinforcement 
learning with intrinsic rewards generated in response to an agent improving its model 
of the world (Schmidhuber, 1991c). Curious agents are rewarded for learning to 
predict aspects of the world with greater accuracy so that it can better predict the 
consequences of its actions. 

One of the most interesting curious agents developed by Schmidhuber used two 
“brains” in competition to determine the most interesting course of action at an instant 
(Schmidhuber, 1997). Each brain conducts independent experiments to explore a 
space of possibilities. When a brain discovers a surprising result, it can challenge the 
other brain to predict the result in an attempt to surprise it. The other brain has the 
ability to veto the challenge if it is not confident that it can predict the result. If a brain 
accepts a challenge and loses, it is punished and the challenger rewarded. If the 
challenged brain wins it is rewarded and the challenger punished. The result of using a 
two-brain approach is robust agent behaviour that balances exploration versus 
exploitation and was shown to outperform standard reinforcement learning techniques 
set the task of exploring a simulated environment. 

Marsland et al. have developed robots that display orienting and locomotive 
exploratory behaviour motivated by curiosity that they call neotaxis (Marsland et al., 
2000a; 2000b; 2000c; 2001). The habituated mechanisms used by the robots to detect 
novelty respond to how recently an input was last experienced. The robots have been 
shown to detect novel features of an environment that aid the efficient exploration of 
complex environments that are initially unknown. 

Macedo and Cardosa (2001a, 2001b) presented a model of surprise and curiosity 
in a design system using Case-Based Reasoning. They have presented their model as 
general-purpose design search heuristic in much the same way that the one described 
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in the following chapter is presented. Although they describe their model as one of 
surprise, it is closer to Berlyne’s definition of novelty because the expectations used 
are implicit to the learning process, rather than explicitly generated in preparation for 
an anticipated experience. A more detailed discussion of the work of Macedo and 
Cardosa is presented in Chapter 7. 

2.5.2.2 Attentive Agents 
The development of active vision systems has become an important topic in robotics 
and other applications that must handle visual data (Aloimonos et al., 1988). Some 
researchers have approached the problem of determining what to pay attention to by 
developing models of selective attention based on expectations, novelty and surprise; 
implementing forms of perceptual curiosity (Baluja, 1996; Peters, 2000). 

2.6 CONCLUSION 
The background research presented in this chapter has provided three important 
insights that have shaped the work presented in the remainder of this thesis: 

1) Relatively little work has been done to develop processes for 
recognising novelty in computational models of curiosity. 

2) A body of work exists in psychobiology and related fields that 
provides theories and models of the novelty detection, the 
determination of interestingness, and curiosity in organisms. 

3) Computational models of novelty detection, and curiosity exist and 
have been implemented in agents applied to domains other than 
design. 

The evaluation of novelty plays a crucial role in determining the creativity of 
products and of the processes or people that produce them. It is therefore somewhat 
surprising that computational models of creativity have generally relied upon 
generative processes to produce interesting novelty without an explicit test. This is 
especially true given the number of different ways that novelty can be experienced, 
e.g. surprise, incongruity etc., and the non-linear relationship between novelty and 
interestingness. Existing models of curiosity suggest that curious design agents can be 
developed that can autonomously explore a design space and situate their design 
actions in their history of experiences. 

The importance of Berlyne’s work cannot be overstated: Berlyne’s model of 
hedonic reward for arousal-stimulating devices, like novelty, has been a cornerstone 
of modern research in aesthetics and fundamental in the development of the model of 
curiosity presented here. The explicit application of Berlyne’s model of hedonic 
reward to the output of novelty detecting mechanisms represents one of the main 
differences between the model of curiosity developed in the following chapters and 
those developed by others. 
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Chapter 3  

A Computational Framework 
for Curious Design Agents

 

The previous chapter has provided the background needed to identify the necessary 
components of a curious design agent. Curious design agents need to interact with an 
environment, learn from those interactions, determine their interest in new 
experiences relative to a history of previous experiences and take actions to promote 
further interesting experiences. 

The aim of this chapter is to provide a framework for describing curious design 
agents. The objectives are (1) to describe the functional components that make up a 
curious design agent, and (2) to present an approach to developing multi-agent 
simulations using curious design agents. 

This chapter begins with a description of the components of an agent as an 
abstract architecture that delineates the functions of sensing, perceiving, conceiving, 
acting, effecting, and remembering. A framework for curious design agents is 
presented, adding the components necessary to support curiosity. The model of 
curiosity presented here requires functional units to be added for novelty detection, 
interestingness evaluation, and curious concept formation. The second half of this 
chapter develops a framework for developing multi-agent simulations of creative 
societies based on Liu’s dual generate and test model of social creativity (Liu, 2000). 

3.1 A SIMPLE AGENT 
The abstract architecture for a simple agent presented in this section is based on the 
framework presented by Wooldridge (1999). The abilities of curious design agents 
and their components are given as functions that map between states of different 
types. Functions maintain no state information across time and so the requirements for 
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short-term and long-term memory for an agent are described separately, providing a 
clean separation of function, state and memory. The description of a simple agent 
begins with the environment with which the agent interacts. The internal components 
of a simple agent consist of processes for sensing, perceiving, conceiving, action, 
effecting as well as short-term and long-term memory. 

3.1.1 Environments 
An agent’s environment can be characterised as a set, W, of all possible environment, 
or world, states: 

{ }K,, 10 wwW =  (3.1) 

3.1.2 Agents 
An agent’s ability to effect change in the world is determined by the range of its 
effectors that is assumed to be characterised by a set, E , of all possible states that an 
agent’s effectors can be configured to take: 

{ }K,, 10 eeE =  (3.2) 
Consequently, an agent can be viewed in its most abstract sense as a function, α , 

that maps sequences of environment states to new environment states: 
EW →∗:α  (3.3) 

At a given time an agent decides on an action to effect, Ee ∈ , based on its history 
of experiences of its environment to date, *W . The processes involved in an agent 
deciding to take an action are described below. 

The behaviour of the environment with respect to an agent’s actions can be 
represented as a function, ε , that maps the current environment state, Ww ∈ , to the 
subset of possible environment states, W⊆ε , after the agent EW →∗:α has 
effected it chosen action, Ee ∈ : 
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If the range of ε  contains only singletons, i.e. sets containing only one member, 
then the environment is deterministic and the behaviour of the environment can be 
accurately predicted. Otherwise the environment is non-deterministic and the results 
of taking actions cannot be guaranteed, only estimated with some confidence. 

3.1.2.1 Sensing 
At the interface between an agent and its environment are its sensors and effectors. 
Sensors transform aspects of the external state of the world into a set of internal 
variables called sense data. The range of an agent’s senses can be characterised as a 
set, S, of sensory states: 

{ }K,, 10 ssS =  (3.5) 
An agent’s sensory abilities are represented as a function, S , that takes the current 

state of the environment, Ww ∈ , and maps it to a sensory state, Ss ∈ : 
SW →:S  (3.6) 
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3.1.2.2 Perceiving 
Perception is the process of extracting useful features, i.e. percepts, from the raw 
sense data. An agent’s ability to perceive can be characterised by a set, P : 

{ }K,, 10 ppP =  (3.7) 
The process of perception is represented as a function, P , that takes the current 

sensory state of the agent, Ss ∈ , and maps it to a perceptual state, Pp ∈ : 
PS →:P  (3.8) 

3.1.2.3 Conceiving 
The term conception is used here to encompass all of the high-level functions of an 
agent, including belief revision, goal setting and plan setting. An agent’s ability to 
take appropriate actions is determined by its ability to conceive of its situation and can 
be characterised by a set, C , of conceptual states: 

{ }K,, 10 ccC =  (3.9) 
An agent’s decision-making processes are represented as a function, C , that maps 

sequences of perceptual states to a conceptual state: 
CP →∗:C  (3.10) 

Note that the conceptual processes are the only ones that take a sequence as an 
input and the consideration of an agent’s situation is localised in the highest-level of 
agent function. 

3.1.2.4 Acting 
Action is the process of translating high-level goals and plans lower-level commands 
that can be carried out by effectors. The actions that an agent takes are represented as 
a set, A : 

{ }K,, 10 aaA =  (3.11) 
The process of determining which action to take is represented as a function, A, 

that maps the current conceptual state, Cc ∈ , to an action, Aa ∈ : 
AC →:A  (3.12) 

3.1.2.5 Effecting 
The effect of taking an action in an environment can be modelled as a function, E, 
that takes an action, Aa ∈ , and configures the agent’s effectors it into new state, 

Ee ∈ , to accomplish the chosen action: 
EA →:E  (3.13) 

3.1.2.6 An Abstract Agent 
The above description represents all of the required functions for an agent. A 
description of an agent consisting of processes for sensing, perceiving, conceiving, 
acting and effecting can be written as a compound function: 

( )( )( )( )( )∗

∗∗∗  →→ → → →
W

EACPSW effectactconceiveperceivesense

SPCAE:
:

α
α

 (3.14) 

The architecture for an abstract agent is illustrated in Figure 3.1. The functions 
described above as processes illustrated by circular nodes. There may be several 
processes contributing to a single function in an agent as in the case of the sensors and 
effectors. Solid arrows represent the flow of state variables between processes. 
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Figure 3.1: A simple agent architecture. 

Simple agents of the type illustrated in Figure 3.1 are not sufficient for developing 
models of curiosity. Curiosity is all about trying to learn about the world and such 
simple agents do not provide the necessary functions to learn as they interact with the 
world. 

So far the decision functions of agents have been described as a mapping from 
sequences of environment states to an effected action. For the standard agent this is 
the agent function, EW →*:α , taken as a whole. In the simple agent described 
above the mapping from a sequence of input states is limited to the conceptual 
function, CP →*:C , that maps from sequences of percepts to a concept. The use of 
this scheme allows agents to be represented whose decision-making is influenced by 
history. This is important because curiosity is all about trying to learn about the world 
and agents must therefore provide the necessary functions to learn as they interact 
with the world. Unfortunately, this is a rather unintuitive representation; in the 
following sections it will be replaced by an equivalent and more natural representation 
by considering agents with memory. 

In practical terms, the minimal agent architecture to support curiosity must include 
some form of memory and a way of adapting that memory to store new experiences. 
Unfortunately, agents cannot be equipped with infinite memories using unlimited 
storage capacity, consequently, some assumptions must be made about the importance 
of previous experiences to determine what should be remembered. Two reasonable 
assumptions are that (a) recent experiences are likely to be the most relevant at the 
current time, and (b) similar experiences from any time in the past are likely to be 
useful in determining what, or perhaps what not, to do. These assumptions suggest 
two different ways of reducing the amount of space required to store representations 
of previous experiences: 

1) Store representations of recent experiences. 

2) Store generalisations of similar experiences. 
Short-term memory stores a limited set of accurate representations of recent 

experiences. Long-term memory stores generalisations of more experiences from 
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longer ago but with an increased chance that they may be recalled inaccurately due to 
the process of generalisation. 

The amount of short-term memory an agent has may vary — but the need for 
short-term to store accurate descriptions of recent events will always mean that short-
term memory will extend backwards in time for a relatively short period of time 
compared to the average lifespan of an agent. In humans, short-term memory is often 
said to contain 7±2 “chunks”, where a chunk is taken to be an easily remembered 
item, e.g. a single letter, a word or a common phrase. Similarly, a computational agent 
might be expected to accurately remember a small number of items, e.g. 10, in short-
term memory.  

3.1.2.7 Short-Term Memory 
A short-term memory unit, STM , stores a number of percepts, actions and concepts 
for a short period of time to support communication between processes, time-based 
processing of inputs, and decision-making. The content of STM  is represented as a 
set of recent percepts, actions and active concepts. 

{ }ACPSTM
STMSTMACP

,,
:STM
=

→×××
 (3.15) 

To use STM  the perception, conception and action processes need to be updated 
to store and retrieve variables. The updated process of perception, P , takes sensed 
data, Ss ∈ , and the contents of short-term memory, STM , and produces a new 
perceptual state, Pp ∈ . Conception takes the contents of short-term memory, STM , 
and produces a new conceptual state, Cc ∈ . Action takes the contents of short-term 
memory, STM , produces a new action, Aa ∈ . 
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 (3.16) 
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Figure 3.2: An agent with short-term memory. 

An agent with short-term memory is illustrated in Figure 3.2. The figure shows 
that STM  is located between the processes of perception, conception and action. 
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STM  mediates the communication of variables between processes and allows a 
process to store its own state for future reference. 

3.1.2.8 Long-Term Memory 
Long-term memory stores representations of previous experiences. Long-term 
memory is represented as a function, LTM , that takes the current conceptual state of 
the agent, Cc ∈ , and maps it to a memory, Mm ∈ , and updates its internal state as a 
side effect: 

LTMMC ×→:LTM  (3.17) 
Conceptual processes that make use of long-term memory map the remembered 

state, M , together with the content of short-term memory, to a new conceptual state, 
C . 

CSTMM →×:C  (3.18) 
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Figure 3.3: A learning agent with long-term memory. 

3.2 A CURIOUS AGENT 
The architecture for curious design agents adds meta-level conceptual functions to the 
architecture for agents already described. The meta-level functions determine the 
novelty of the current conceptual state of the agent, calculate the interestingness of the 
situation based on the novelty detected and set new goals for the agent based on the 
interestingness of past and present situations and the expected interestingness of 
future situations. 

One of the goals of a model of curiosity is to determine aspects of the 
environment, as conceived by the agent, that are not modelled sufficiently well by 
LTM . This is done by determining the novelty of a situation that indicates the 
atypicality of the current environmental state with respect to the agent’s experiences. 
A second goal of curiosity is to identify unexpected consequences of actions. Again 
this involves identifying deficiencies in the model of the world held by LTM , but in 
this case it is the dynamic nature of interaction that is under scrutiny. Curiosity in 
unexpected consequences is based on the detection of surprise that indicates that the 
predictions made by an agent about futures states of the environment have been 
proved incorrect. 
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3.2.1 Novelty and Surprise Detection 
Novelty detection determines the novelty of a situation. Novelty detection is 
considered a meta-level conceptual process because the concept of novelty is based 
upon the concepts built by other conceptual processes categorising the situation. The 
novelty detection function, N , takes the conceptual state of the agent, Cc ∈ , and 
compares it with memories of previous experiences, Mm ∈ , constructed by LTM to 
produce a novelty state, Nn ∈ : 

NMC →×:N  (3.19) 
Both novelty and surprise can be detected by comparing the current conceptual 

state of an agent with memories of previous experiences. 

3.2.1.1 Novelty Detection 
A novelty detector computes the novelty of a situation on the basis of all of the 
previous experiences of the agent. The determination of novelty assumes that future 
situations are likely to be similar to previous situations. Depending on the nature of 
the memory implemented in the agent, the determination of novelty may also assume 
that a situation in the near future is likely to be similar to one that has just past. To 
detect novelty an agent must: 

1) Construct a categorisation of the current situation. 

2) Determine the probability of the categorisation. 

3) Compute novelty as the inverse of the probability. 

The conceptual process, C , at time t  uses LTM  to retrieve a generalised 
representation of similar situations that stands for the situation’s category. The task of 
the agent’s novelty detector, N , is therefore to determine the probability of a 
situation’s category being constructed. 

3.2.1.2 Surprise Detection 
A surprise detector computes the surprise of a situation compared to the expected 
situation based on previous experience. The process for detecting surprises is slightly 
more involved that for detecting novelty because it involves a comparison across 
time: 

1) Construct expectations of a future situation. 

2) Compare the previously constructed expectations with perceptions. 

3) Compute surprise as the difference between expectations and 
perceptions. 

At time t , the conceptual processes, C , of an agent may be used to construct 
expectations of a future experience as an element of tc  that are stored in STM  for 
later reference. The conceptual process may construct expectations either by getting 
LTM  to provide a memory of a similar experience, sm , where ts ≤≤0 . or by 
reasoning about the consequences of taking an action, ta . 

At a later time u , where tu > , (e.g. after the agent has performed ta ) the agent’s 
novelty detector, N , can calculate an expectation-based measure of novelty by 
retrieving the previously constructed expectations in the conceptual state, tC  and 
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compare them with the current conceptual state uC  to determine the novelty of the 
situation uN  as the difference between tC  and uC . 

3.2.2 Interestingness Function 
The interestingness of a situation, as discussed in Section 2.4, is a measure of the 
importance of the situation with respect to an agent’s existing knowledge; interesting 
situations are neither too similar nor too different from ones previously experienced. 
The interestingness function determines a value for the interestingness of a situation, 

Ii ∈ , based on the novelty detected, Nn ∈ : 
IN →:I  (3.20) 

3.2.3 Curiosity 
Curiosity is a meta-level conceptual process that monitors the conceptual process, C , 
to estimate the potential of future states for learning. Curious conception is denoted in 
the following agents as a function, C , with a similar signature as the conceptual 
process for a non-curious agent, C , except that it monitors the conceptual state of the 
agent and not the perceptual state, and that it produces a curious state, Xx ∈ , 
containing goals: 

XISTMMC →×××:X  (3.21) 
The conceptual function C  is updated to take the curious state of the agent into 

account when conceiving of the situation: 
CSTMXM →××:C  (3.22) 

Figure 3.4 illustrates the architecture of a curious agent: it shows the 
communication between the conceptual function C  and the curiosity function X . 
The purpose of the communication between the conceptual and curiosity processes is 
to determine new goals based on interestingness. The interestingness of a situation for 
a curious agent is based on the novelty detected. Therefore X  communicates with 
two other processes, N  and I , that determine the novelty and interestingness of a 
situation respectively. 
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Figure 3.4: A curious agent. 
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3.3 MULTIPLE AGENTS 
This section presents a framework for developing multi-agent models of social 
creativity by adapting Liu’s dual generate-and-test model to use curious design 
agents. This approach to modelling social creativity is called artificial creativity. 

3.3.1 Liu’s Dual Generate-and-Test Model of Creativity 
Recognising the need for a unified model of creativity in design computing, Liu 
(2000) presented a synthesis of the personal and socio-cultural views of creativity in a 
single model. Liu realised that the existing models of personal creativity 
complemented the socio-cultural models by providing details about the inner 
workings of the creative individual missing from the models of the larger creative 
system. 

Liu proposed a dual generate-and-test model of creativity as a synthesis of Simon 
et al’s model of creative thinking and Csikszentmihalyi’s systems view. As its name 
suggests, the dual generate-and-test model of creativity encapsulates two generate-
and-test loops: one at the level of the individual and the other at the level of society. 
The generate-and-test loop at the individual level, illustrated in Figure 3.5(a), provides 
a model of creative thinking, incorporating problem finding, solution generation and 
creativity evaluation. The socio-cultural generate-and-test loop models the 
interactions among the elements of Csikszentmihalyi’s systems view of creativity, as 
illustrated in Figure 3.5(b). In particular, it captures the role that the field plays as a 
socio-cultural creativity test; ensuring that works that enter into the domain are 
considered creative by more that just its creator. In Liu’s model, the domain has a 
rather passive role as a supplier of starting points for new generate-and-test cycles — 
a more dynamic model of the domain is discussed in Section 6.2.5.4 as the subject of 
possible future research. The combined dual generate-and-test model of creativity is 
illustrated in Figure 3.5(c). 

Liu’s model unifies Simon et al’s and Csikszentmihalyi’s models of creativity to 
form a computational model of creativity that shows how personal and socio-cultural 
views of creativity can be modelled in a single system. Compared to Boden’s model 
of creativity, the dual generate-and-test model of creativity models both the P-
creativity and H-creativity of individuals using the generate-and-test loops at different 
levels. Using the language of Gardner we may say that what distinguishes small-c 
creativity from big-c creativity is that big-c creativity affects changes to the domain 
whereas small-c creativity does not. 

Liu’s dual generate-and-test model shows that it is possible to cast 
Csikszentmihalyi’s systems model in computational terms and thereby provides us 
with a useful basis for a framework for developing models of artificial creativity. 
Before developing Liu’s model further, we will examine the requirements of a 
computational model of artificial creativity. 
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Figure 3.5: Liu's Dual Generate-and-Test Model of Creative Design: (a) the personal 

generate-and-test model, (b) the socio-cultural generate-and-test model, (c) the combined 
dual generate-and-test model. 

3.3.2 Artificial Creativity 
The artificial creativity approach that is presented here is similar to Langton’s 
approach to developing computational models of Artificial Life (Langton, 1989). The 
essential requirements of a computational model of artificial creativity are: 

• The model contains a society of agents situated in a cultural 
environment. 

• There is no agent that can direct the behaviour of all of the other 
agents. 

• There are no rules in the agents or the environment that dictate global 
behaviour. 

• Agents interact with other agents to exchange artefacts and 
evaluations. 

• Agents interact with the environment to access cultural symbols. 

• Agents evaluate the creativity of artefacts and other agents. 
 
Many of the requirements of a computational model of artificial creativity are 

similar to the requirements of a computational model of Artificial Life. Although 
some of the details are different, both types of models consist of a population of 
agents, and both require that there are no rules or agents that can dictate global 
behaviour. An additional requirement of artificial creativity agents not found in the 
requirements of Artificial Life is that the agents in an artificial creativity model must 
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be able to make evaluative judgements about the creativity of products in order to 
implement the personal and socio-cultural creativity tests found in Liu’s model. This 
ability of curious design agents to make these judgements is fundamental to the 
implementation of artificial creativity systems. 

To illustrate the approach, consider how one would model a society of artists. 
First, we would define a repertoire of behaviours for different artistic agents and 
create lots of these agents. We would then start a simulation run by specifying some 
initial social configuration of the agents within a simulated cultural environment. 
From this point onwards the behaviour of the system would depend entirely on the 
interactions between different agents and the interactions between the agents and their 
cultural environment. Importantly, there would be no single agent that could enforce a 
definition of creativity by controlling the behaviour of all of the other agents. In 
addition, there would be no rules in the agents or in the environment that would define 
a global definition of creativity. The notions of whom and what are creative held by 
the society would emerge from the multiple notions of creativity held by the 
individual agents. 

3.3.3 The Importance of Emergence 
The requirements of artificial creativity are designed to model the emergence of 
phenomena in societies of agents consistent with creativity in human societies. 
Emergence is an important feature of artificial creativity systems, where the behaviour 
at a certain level of the creative system arises from interactions at lower levels. 
Cariani (1991) distinguished three types of emergence: computational emergence, 
thermodynamic emergence and emergence-relative-to-a-model.  

Computational emergence is most often used to describe work in artificial life 
research. Complex global structures or behaviours arise from local computational 
interactions. In artificial life research, the stable patterns in cellular automata, and the 
flocking behaviour of simulated birds are examples of emergent phenomena. Cariani 
argues that from the perspective of a programmer with complete access to the 
computational elements of an artificial life simulation there is nothing emergent in 
them because at some level it must be deterministic in order to run on a computer. 
However, for an observer with an incomplete model of the computation, artificial life 
can provide important insights, as Cariani writes: 
 

"The interesting emergent events that involve artificial life simulations reside not in the 
simulations themselves, but in the ways that they change the way we think and interact 
with the world." 

 
Thermodynamic emergence can be characterized as the emergence of order from 

noise. Stochastic processes at a micro-level form discrete macro-level structures or 
behaviours. In physical systems, temperature and pressure are examples of 
thermodynamic emergence. Temperature and pressure are emergent properties of 
large ensembles of molecules and are due to interactions at the molecular level. An 
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individual molecule possesses neither temperature nor pressure; they are properties 
that only emerge when many molecules are brought together. 

Emergence-relative-to-a-model is defined by Cariani as "deviation of the 
behaviour of a physical system from an observer's model of it." Emphasizing the 
requirement to have a model by which to judge the emergence within a system under 
observation. Importantly, while an artificial life simulation does not support 
emergence-relative-to-a-model for an omniscient programmer (at least within the 
confines of the simulation) such simulations can support emergence-relative-to-a-
model for an artificial agent within the closed world with incomplete knowledge of 
the whole system. 

In artificial creativity, the socio-cultural evaluations of whom and what are 
creative are emergent phenomena in the emergent-relative-to-a-model sense described 
above; no individual can dictate the collective evaluations of whom and what are 
creative, they can only try to influence other individuals by exposing them to their 
products and their personal evaluations. The emergence of macro-level creativity from 
the interactions of individuals at the micro-level is illustrated in Figure 3.6. 

 
Figure 3.6: A behaviour-based approach to the study of emergent creative behaviour at 

the level of society by modelling the behaviour of individuals (after Langton, 1989). 

In Boden’s terms we might be tempted to say that H-creativity is emergent 
whereas P-creativity is not because the processes that implement P-creativity test are 
fixed. However, in the artificial creativity system described later the interaction 
between agents and the continual learning of the agents through exposure to new 
artefacts mean that what an agent considers to be P-creative is an emergent property 
of the whole system. An individual embedded within an artificial creativity system is 
affected by its socio-cultural context such that it will not produce the same P-creative 
products as it would in isolation. Hence, both H-creativity and P-creativity must be 
considered emergent properties of creative systems. 

3.3.4 Adapting Liu’s Model to Artificial Creativity 
A critical aspect of Liu’s model that must be addressed to develop computational 
models of artificial creativity is the definition of the socio-cultural creativity test. A 
literal implementation of Liu’s model would produce a separate process that would 
model the socio-cultural creativity test. This is a viable solution for modelling some 
aspects of creativity, as demonstrated by the computational model developed by 
Gabora to study the memetic spread of innovations through a simulated culture 
Gabora (1995; 1996; 1997). Colton (2000) applied a similar socio-cultural creativity 
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test to assess the increase in creativity due to the co-operation of agents searching a 
space of mathematical possibilities using different search heuristics. However, 
implementing a single function, or agent, that model a socio-cultural creativity test 
would violate one of the requirements for artificial creativity outlined previously, i.e. 
that no rule or agent should direct global behaviour. 

Liu does not go in to details about the definition of this function but it appears that 
he considers this function to be outside the scope of computational models and 
something that can only be implemented by some form of interaction with human 
society. Many computational models developed reinforce this view by concentrating 
on the constrained generation of novel ideas in their computational models and 
relying on users to evaluate the creative worth of these ideas. For example, see 
Clancey (1997) for a discussion of the social situatedness of Harold Cohen’s 
AARON. 

To computationally model the behaviour of creative societies, it is necessary to 
define a socio-cultural creativity test without violating the requirements of artificial 
creativity. The key to solving this problem is to realise that the personal creativity test 
inside each individual can be used to develop a socio-cultural test for creativity. The 
socio-cultural creativity test can be modelled by permitting the communication of 
artefacts and evaluations of personal creativity between individuals. An illustration of 
two individuals communicating creativity evaluations is illustrated in Figure 3.7. 
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Figure 3.7: The communication of evaluations between individuals and its integration 

into the individual generate-and-test cycle. 

In the interaction illustrated in Figure 3.7, Agent A communicates an artefact that 
it considers to be creative, i.e. that passes its personal creativity test, to Agent B. 
Agent B evaluates the artefact according to its own personal creativity test and sends 
its evaluation back to Agent A. In this way, Agent B can affect the generation of 
future artefacts by Agent A by rewarding Agent A when it generates artefacts that 
Agent B considers to be creative. More subtly, Agent A can affect the personal 
creativity test of Agent B by exposing it to artefacts that Agent A considers to be 
creative, because the evaluation of creativity involves an evaluation of novelty, Agent 
A affects a change in Agent B’s notion of creativity by reducing the novelty of the 
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type of artefacts that it communicates. By exposing Agent B to artefacts that Agent A 
considers to be creative, because they are novel and yet understandable, it can alter 
the evaluation of creativity made by Agent B. 

Agent-centric evaluations of creativity permit the emergence of socio-cultural 
definitions of creativity as the collective function of many individual evaluations. 
Without agent-centric evaluations of interestingness the collection of agents would 
simply represent parallel searches of the same design space. To implement the socio-
cultural creativity test as a collective function of individual creativity tests a 
communication policy is needed. A simple communication policy would be for agents 
to communicate a product when their evaluation of that product is greater than some 
fixed threshold. More complex communication policies might incorporate more 
strategic knowledge about when to communicate and who to communicate with. 

To complete the implementation of the field as a collection of individuals, the 
individuals must be given the ability to interact with the domain according to some 
domain interaction policy. A simple domain interaction policy would follow the 
communication policy above and allow agents to add products of the generative 
process if the personal creativity evaluation is greater than a domain interaction 
threshold. This approach is illustrated in Figure 3.7. However, to ensure some level of 
social agreement before the addition of products to the domain, a slightly more 
complex domain interaction policy ensures that no individual is allowed to submit 
their own work to the domain. Thus, at least one other agent must find an individual’s 
work creative before it is entered into the domain. 

Making these amendments to Liu’s dual generate-and-test results in the model of 
socio-cultural creativity illustrated in Figure 3.8. 
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Figure 3.8: The artificial creativity model of socio-cultural creativity. 

3.4 CONCLUSIONS 
The frameworks for curious design agents and artificial creativity presented in this 
chapter show that: 

1) A small number of additional functions are required to transform an 
agent developed using a conventional framework to one that models 
creativity. 
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2) Using an approach familiar from the study of artificial life, curious 
design agents can be used to model socially situated creative 
behaviour. 

Modelling curiosity requires the addition of only a few functions that monitor the 
conceptual state of the standard agent. The addition of functions to detect novelty, 
determine its interestingness and takes actions to promote future interesting 
experiences, provides curious design agents with the sort of autonomy that previous 
models of creativity have lacked. 

The autonomy of curious design agents for determining what is interesting, and 
therefore potentially creative, is the key to adapting Liu’s dual generate-and-test 
model of designing. The artificial creativity approach substitutes the monolithic social 
test of creativity found in Liu’s model with a distributed agreement that emerges from 
the communication of individuals. 
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Chapter 4  

Implementing Curiosity 

At the heart of a curious design agent are the core memory units STM and LTM. One 
of the most critical decisions when implementing curious design agents is how to 
implement these components. Different implementations of short-term and long-term 
memory will produce different curious behaviour because curiosity is based upon the 
ability of these implementations to learn the design space that the agent is exploring. 

This chapter examines some of the options available to curious design agent 
developers in terms of the technologies used to build components and the resulting 
differences in behaviour of the agents. 

The first half of this chapter provides some details of the technologies used in this 
research to implement functions of short-term and long-term memory, novelty 
detection, interest evaluation and curious goal setting. In the case of long-term 
memory, attention is given to the learning behaviours of the different implementations 
as these have a significant effect on the behaviour of agents developed using them. 
The second half of this chapter gives some examples of curious behaviour in a simple 
environment that is presented as a spatial analogue to a design space. The differences 
that result from using different implementations of the various components are 
illustrated in this visual environment to give a feel for the types of behaviours that can 
be expected in the more complicated design applications that follow. 

The implementation of processes for sensing, perceiving, acting and effecting is 
domain specific and is dealt with in the sections covering applications of curious 
design agents. Concept formation, learning and curiosity are more general and the 
implementations of these functions are discussed here. 

4.1 SHORT-TERM MEMORY 
Short-term memory can be implemented simply as a store of recent variables 
produced by the various processes that interact with it. In this way, short-term 
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memory is modelled as an accurate record of recent experiences that go to make up a 
situation. Of course, more complex models of short-term memory are possible, but a 
simple store of important variables has sufficed for the agents presented in the 
following chapters.  

Simple agents have only a small number of experiences that need to be stored in 
STM at a time but more complicated agents may require limits to be placed on the 
number of experiences that STM can hold and hence some sort of decision criteria to 
determine which memories are important enough to store in STM (see Waltz (1998) 
for a discussion of the situated nature of importance.) 

4.2 LONG-TERM MEMORY 
Implementing the construction of memories by LTM is a more complex problem than 
implementing short-term memory. To implement long-term memory a process is 
required that can store representations of previous experiences and their associations 
with other experiences such that they can be retrieved at a later time with a new 
experience may be only a partial match to the original. This type of memory is 
sometimes called an associative memory. As their name suggests associative 
memories store associations between stored representations. To store an association 
between two representations they are presented simultaneously to the associative 
memory and it learns a mapping from one to the other. In an agent, an associative 
memory can be used to map between different features of an experience such that 
expectations of other features, either in the same experience or in future ones, can be 
predicted. 

When an associative memory is given the same representation twice, as both input 
and output of the mapping, it is often called an auto-associative memory. In an agent, 
an auto-associative memory can be used to recall a previously stored representation of 
a given experience. This may not seem very useful, if the memory were perfect then 
the output of the memory would be the same as the input. However, as discussed 
above, long-term memory is necessarily a constructive process because of the 
prohibitive requirements on storage capacity and recollection time of a perfect long-
term memory implemented as a database that stored every experience perfectly. 
Instead, LTM constructs memories using a process that attempts to store the most 
important aspects of an experience by removing redundancies. Importantly for an 
agent developer, the processes that auto-associative memories employ to achieve the 
required compression can have a significant effect on the experiences that are recalled 
in response to a situation. Instead of recalling perfect memories of previous 
experiences an auto-associative memory will recall a generalised representation of an 
amalgam of similar experiences that can be used to compare an experience against a 
history of previous similar experiences. This is the basis of novelty detection in many 
of the agents described in the remainder of this thesis. 

4.2.1 Neural Networks 
Several different types of neural networks have been used to implement the learning 
systems in curious design agents. Self-Organising Maps (Kohonen, 1993; 1995) and 
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networks based on Adaptive Resonance Theory (Carpenter and Grossberg, 1987a; 
1987b; 1990; Carpenter et al., 1991a; 1991b; 1991c; 1992) have proved to be useful 
and complementary technologies for implementing unsupervised learning. The 
algorithms for these two different approaches to unsupervised learning are described 
briefly in this section, because the dynamics of the resulting networks play important 
roles in the behaviour of curious design agents. Self-Organising Maps and Adaptive 
Resonance Theory networks have quite different behaviours when learning conceptual 
spaces, which make them good for different design tasks depending on the 
characteristics of the design space and the novelty to be detected. 

4.2.2 Self-Organising Maps 
Self-Organising Maps (SOMs), also known as the Self-Organising Feature Maps or 
Kohonen Networks, are some of the most popular neural network models. A self-
organising map consists of a lattice of neurons that are used to represent different 
categories of inputs (Kohonen, 1993). Each neuron has an associated vector of 
weights of the same dimension as the inputs. When a new input is presented to the 
SOM each neuron compares the similarity of its weight vector to the inputs. The 
neuron with the best matching weights is declared the winner. Learning is 
accomplished by updating the winner to reduce the difference between its weights and 
the inputs. In addition, the neurons within a neighbourhood around the winner are 
updated to reduce the difference between their weights and the inputs. This process 
results in a topographic map of the input space, with similar categories being 
represented by nearby neurons. 

Self-Organising Maps have proved to be useful in many applications (see Kaski, 
Kangas and Kohonen, 1998). The unsupervised nature of the SOM learning process 
means that little domain specific knowledge is required about the characteristics of 
input data to apply a SOM to a domain. For this reason SOMs have been used to 
visualise data in complex domains where little knowledge exists to discover the 
inherent categories. SOMs have also been used as detect features of a range of inputs, 
rather than to classes of whole inputs; hence they have sometimes been called Self-
Organising Feature Maps. 

4.2.3 Adaptive Resonance Theory Networks 
Grossberg (1976) introduced the Adaptive Resonance Theory (ART) to provide a 
framework for investigating how people can rapidly and stably learn in real-time 
about an ever-changing world. As a parallel development to the Adaptive Resonance 
Theory a series of neural network architectures have been developed with increasingly 
powerful learning, pattern recognition and hypothesis testing capabilities (Carpenter 
and Grossberg; 1987a; Carpenter and Grossberg; 1987b; Carpenter and Grossberg; 
1990; Carpenter et al.; 1991; Bartfai; 1994). 
The central result of the development of the ART-based networks is the solution to the 
stability-plasticity dilemma (Carpenter and Grossberg, 1987a). The stability-plasticity 
dilemma states that an adequate learning system must be flexible enough to generate 
recognition codes while remaining stable enough to guard against relentless recoding 
caused by irrelevant inputs. The solution to the stability-plasticity dilemma provided 
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by ART networks is to separate the problem into two parts by distinguishing between 
familiar and unfamiliar input patterns using a measure of confidence in category 
matches. The familiarity of an input is determined by an orienting subsystem that 
maintains a measure of tolerance for new patterns. If the difference between an input 
and the prototypes represented by the neurons of the network is greater than the 
tolerance value then the input is considered unfamiliar. 

Unlike SOM networks, the number of neurons in an ART network is variable. 
Familiar patterns are handled in much the same way as inputs are handled by neurons 
in a SOM and the weights of the neuron are updated to better represent the input. When 
unfamiliar input patterns are encountered a series of reset signals sent by the orienting 
subsystem of the network, eventually causes a new neuron to be added to the network, 
ensuring that previously learned categories are retained. 

Baraldi and Alpaydin introduced the SIMPLIFIED ART algorithm that improves 
upon the efficiency of previous ART networks and simplifies the implementation 
without sacrificing the desirable qualities of stability and plasticity (Baraldi and 
Alpaydin, 1998). The ART networks used throughout this research were all 
implemented using the SIMPLIFIED ART algorithm. 

4.2.3.1 Supervised ART Networks 
The adaptive resonance theory has also been used to develop a supervised learning 
system called ARTMAP. The ARTMAP network builds upon the strengths of the ART 
network by creating a means of linking hypothesis testing with the reorganization of 
knowledge (Carpenter and Grossberg, 1991). An ARTMAP network consists of two 
ART networks connected by an associative MAP FIELD with an orienting subsystem.  

The architecture for ARTMAP networks was developed as a biologically plausible 
model of associative learning in the brain. Weenink (1997) developed a simpler 
network ART-based architecture for supervised learning called CATEGORY ART that 
performs similarly to ARTMAP but is computationally more efficient and easier to 
implement. The curious agent presented below uses CATEGORY ART networks to detect 
novelty. 

4.2.4 Learning Behaviour 
Many of the behaviours of curious agents can be traced back to the learning 
behaviours of the neural networks that are used to implement long-term memory so it 
is worthwhile spending a little time examining the learning behaviours of these 
networks. 

4.2.4.1 Self-Organising Maps 
Figure 4.1 illustrates the behaviour of a 10x10 SOM as it learns a two-dimensional 

space. It shows that SOM slowly expands to fill the space and then adjusts the location 
of the neurons to fill the space evenly. 
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Figure 4.1: The mapping of a two-dimensional space using a self-organising map. 

Sequence shows inverse mapping of neurons at time t = 10, 20, 50, 100, 200, 500, 1000, 
2000, 5000. The learning rate of the SOM was fixed at 0.1 with a rectangular 

neighbourhood of radius 3. 

The SOM learning algorithm ensures that the maps produced are topology 
preserving within neighbourhoods, as determined by the neighbourhood function, but 
it cannot guarantee that the map will preserve the topology of the input space for the 
whole map. Figure 4.2 illustrates one of the most common artefacts of the learning 
process, a “twist” in the SOM that reduces the degree to which the map preserves the 
topology of the map on a larger scale than that of the neighbourhoods used to train it. 

 

(a) (b)

q1 

q2 

p1 p2 

 
Figure 4.2: Self-organising maps that have learned mappings for a two-dimensional 
space after 20000 time steps: (a) shows a good mapping, (b) shows a bad mapping. 
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Two neurons mapped onto the space at the positions marked in Figure 4.2a as p1 
and p2, which are relatively close in the input space as they should be for a properly 
trained SOM. In contrast, Figure 4.2b shows the equivalent neurons have been mapped 
to positions q1 and q2, on opposite sides of the input space. Obviously, over this 
region the second map does not preserve the topology of the input space. 

Kohonen (1995) recommends that to avoid such problematic mappings the 
neighbourhood function should initially cover more than half of the neurons to ensure 
an early large-scale ordering on the neurons and that the neighbourhood should 
decrease in size over time to refine the smaller-scale properties of the map. 
Unfortunately, such an approach is not generally useful in systems that must learn on-
line, such as autonomous agents, as there may be no generally applicable method for 
determining when the large-scale structure of the input space has been learned 
sufficiently well to decrease the size of the neighbourhood function. 

4.2.4.2 Simplified ART Networks 
To compare the behaviour of ART networks with SOMs, an ART network was set the 
same task of learning a two-dimensional space as above. The behaviour of the ART 
network is illustrated in Figure 4.3.  

 
Figure 4.3: The mapping of a two-dimensional space using an ART network. Sequence 

shows inverse mapping of neurons at time t = 10, 20, 50, 100, 200, 500, 1000, 2000, 
5000. 

The ability of an ART network to refine its map of a space as required by adjusting 
the tolerance of neurons will become apparent when we look at the behaviour of ART 
networks designed for learning a mapping between domains. 
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4.2.4.3 Category ART Networks 
Figure 4.4 illustrates the learning behaviour of a CATEGORY ART set the task of 
mapping a two-dimensional input space to a four-colour output space, where each of 
the four colours has been allocated to a different quadrant of the input space. The 
details of the colour categories are not important, only that they are allocated to the 
four quadrants of the input space. 

Unlike the previous examples of ART networks Figure 4.4 shows that the 
CATEGORY ART network does not allocate the neurons evenly over the surface of the 
input space. Instead the CATEGORY ART network allocates many more neurons close to 
the boundaries of the four output categories to ensure that the boundaries are resolved 
sufficiently well. 

 

 
Figure 4.4: A CATEGORY ART network that has learned a mapping from a two-

dimensional space to a four-colour space where the four colours have been assigned to 
the quadrants of the plane. The Voronoi cells of the neuron prototypes are shown. 

4.2.5 On-line Learning Behaviour 
The differences in behaviour between SOM and ART networks become even more 
important when we consider that the order that inputs are given to these networks are 
not typically random in the agent-based applications. 

4.2.5.1 Predicting Unseen Situations 
An important difference between SOMs and ART networks is their ability to predict 
unseen situations on the basis of the inputs used to train them. The topology 
preserving qualities of SOMs make them ideal for tasks where the design space is 
continuous and it is desirable for LTM to make predictions of unseen situations that 
lay within the convex hull of previously experienced situations. 

Figure 4.5 illustrates the behaviour of a SOM and an ART network given the task of 
learning categorisations for a two-dimensional space where all of the inputs come 
from two regions separated by a small gap. The regions from which the training inputs 
are taken are marked as the rectangular shaded areas. Figure 4.5 shows that the SOM 
allocates neurons to the space between the input regions but the ART network does 
not. 
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(a) (b)  
Figure 4.5: An illustration of how a SOM allocates neurons to unseen situations while an 

ART network does not: (a) a SOM and (b) an ART network trained on the same 
disconitunous space of samples, indicated by the shaded region. 

The mapping of neurons in the design space over unseen portions by SOMs make 
them a good choice for detecting truly novelty areas of the design space because a 
SOM will be able to generate reasonable expectations of the sorts of experiences that 
can be expected in the unseen region. 

ART networks are more conservative in their predictions, providing confident 
predictions of unseen experiences only within the bounds of the tolerances of neurons 
close to the edges of each region. 

4.2.5.2 Dragging Networks 
A potential problem arises with the use of SOM and ART networks that is a 
consequence of the order that inputs are presented because both learning algorithms 
are sensitive to the order of presentation. 

The agents used in this research present similar inputs to their neural networks in 
close succession along paths through the input space. Figure 4.6 shows how a SOM 
and an ART network, initially trained on a central region, respond to a sequence of 
inputs taken along a “random walk” to the top-right hand corner of the space. The 
SOM is dragged towards the corner as the inputs are presented. In contrast, the ART 
network adds new neurons to account for the new inputs along a similar random path. 

 

 
Figure 4.6: A SOM and an ART network trained on central region and then exposed to a 
series of inputs along a random walk to the top right corner: (a) shows how the SOM is 
deformed as the corner is "dragged" and (b) shows how the ART assigns new neurons. 
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According to this result SOMs are more susceptible to deformation as a 

consequence of the order that inputs are presented. This might be the expected result 
given that ART networks were designed to resolve the stability-plasticity dilemma, 
however, Figure 4.7 shows a possible problem with ART-based learning. If the 
distance between successive inputs is less than the distance moved by the neuron as a 
result of learning, a single neuron can be separated from all of the others and slowly 
dragged around the input space. 

 

 
Figure 4.7: An ART network initially trained on randomly chosen points in the centre of 

the space and then exposed to a series of points along a slow random walk to the top right 
corner. Shows how a single neuron has been dragged along the path. 

These different behaviours affect the determination of novelty and have to be 
borne in mind when the behaviour of curious design agents is being considered. 

4.2.6 Novelty Detectors 
Novelty based on the atypicality of an input is generally calculated based on some 
categorisation error function. While detecting novelty based on infrequency requires 
that the input be confidently recognised before its frequency can be estimated. For 
SOM and ART networks, a simple error measure is the Euclidean distance between the 
closest category prototype and the input pattern. Novelty based on this error measure 
can determine the atypicality of the input. 

To recognise the novelty of infrequent or uncommon patterns, Marsland et al. 
(2000c) have proposed the HABITUATED SOM (HSOM) architecture. In an HSOM each 
neuron of the SOM is connected to an output neuron via a habituating synapse. The 
habituating synapse reduces the efficacy with which it transfers activation from the 
map neuron to the output neuron with use according to Stanley’s model of habituation 
(Stanley, 1976). At time t, the synaptic efficacy, y, decreases according to the 
following equation (from Marsland, 2000c): 

Syy
dt
dy −−= ][ 0ατ  (4.1) 

where y0 is the original value of y, τ and α are constants governing the rate of 
habituation and recovery respectively, and S is the stimulus presented. In an HSOM, S 
is the output of a map neuron. Novelty is calculated by the output neuron attached to 
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each of the map neurons as the sum the map neuron activations attenuated by the 
habituated synapses. 
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Figure 4.8: The effects of habituation on synaptic efficacy for different values of τ. In 

both cases α = 1.05. The stimulus curve indicates the output of the SOM neuron 
connected to the habituating synapse. 

4.2.6.1 Combining Measures of Novelty 
Different measures of novelty may need to be combined to produce a measure of the 
novelty for a situation. The simplest way to combine novelty evaluations is to treat 
them as if they were independent estimates of the probability of an aspect of the 
situation being novel. The probability of the situation, taken as a whole, being novel 
can therefore be calculated as the product of the different novelty measures. 

4.2.7 Interest and Boredom 
The models of interest and boredom implemented in curious design agents have a big 
impact on the behaviour of the agents. The two models used in this research use a 
linear hedonic function and a hedonic function based on the Wundt curve (discussed 
in Section 2.4.2). 

The linear hedonic function has been explicitly used by previous researchers (e.g. 
Schmidhuber, 1997) or has been implicitly assumed by others who have not included 
interest as distinct from novelty (e.g. Marsland et al., 2000). A linear hedonic function 
can be thought of as an approximation to the Wundt Curve close to the origin where it 
is safe to seek as much novelty as possible. A linear hedonic function is appropriate 
when only a small amount of novelty is expected during the lifetime. In many cases 
extreme novelty is either of little worth because it cannot be learned, in these cases a 
hedonic function based on the Wundt Curve will be preferable because it models an 
aversion to extreme novelty. 

4.2.7.1 Modelling Interest using a Linear Hedonic Function 
A simple way to model interest is to linearly scale the novelty detected (Schmidhuber 
(1997). The interest at time t, it, is equal to the linear reward, R(nt). 

R(nt) = ρnt + R0 (4.2) 
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Where ρ is the slope of the reward function and R0 is the base reward for nt = 0. 
Typically R0 = 0 and ρ is selected so that the maximum value of R(nt) = 1, i.e. 
ρ = 1 / max(nt), where max(nt) is the maximum value of nt ∀  t. 

4.2.7.2 Modelling Interestingness using the Wundt Curve 
The Wundt curve can be approximated as the difference of a reward function R(nt) 
and a punishment function P(nt): 

it = R(nt) – P(nt) 

R(nt) = )(
max

min1 RntRe
R

−−+ ρ  

P(nt) = )(
max

min1 PntPe
P

−−+ ρ  (4.3) 

Where Rmax is the maximum reward, Pmax is the maximum punishment, ρR and ρP 
are the slopes of the reward and punishment sigmoid functions, Rmin is the minimum 
novelty to be rewarded and Pmin is the minimum novelty to be punished. 

4.2.7.3 Modelling Boredom 
Boredom is an internal state of a curious agent that tracks the interestingness of 
situations over time. A lack of interestingness will make a single situation “boring” 
but it requires a sustained lack of interesting situations for an agent to become bored. 
To model boredom an agent must track the degree of its accumulated interest in 
successive situations. The current accumulated interest at time t, yt, is a fraction, δ, of 
the accumulated interest of the agent at time t-1, yt-1, plus the interest of the agent in 
the current situation, it. 

yt = δyt-1 + it  where  0 ≤ δ ≤ 1 (4. 4) 
A state of boredom can be declared for an agent when its arousal falls below a 

“boredom threshold”, i.e. when yt < β, where β is the boredom threshold. 

4.2.8 Curiosity 
Curiosity is the outward behaviour that an agent exhibits and as such it requires that 
the agent take some action. A simple heuristic for navigating design spaces uses the 
detected novelty to determine how much design variables should be changed, i.e. if 
the current design is interesting generate a similar design as it is also likely to be 
interesting else if the current design is not interesting generate a dissimilar design to 
begin a search for interesting designs elsewhere in the design space.

4.3 CONCLUSIONS 
This chapter has provided some important background information for anyone that 
wants to implement curious design agents: 

1) Appropriate technologies have been identified for implementing 
models of curiosity, e.g. self-organising artificial neural networks. 

2) Some of the potential consequences of choosing one technology over 
another for the purposes of implementing curiosity have been 
explored. 

This chapter has shown that curiosity is relatively easy to implement, it can be 
implemented using standard and relatively simple components: in particular, neural 
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networks, novelty detectors and simple reward functions. The following chapters 
examine some of the behaviours that emerge when curious design agents explore 
design domains. 
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Chapter 5  

Curious Design Methods 

The implementation described in the preceding chapter provides the core technology 
for developing curious design agents: applying a curious design agent to a new 
domain simply requires the addition of appropriate sensors, perceptors, actors and 
effectors. It has been possible to apply curious design agents to a number of different 
domains with relative ease and thereby explore the behaviour of curious agents in 
multiple domains using different approaches to designing. 

The aim of this chapter is to show that curiosity is a general-purpose search 
heuristic useful for exploring design spaces using different design methods. This 
chapter presents three curious design agents exploring different visual domains using 
three different design methods to explore these spaces: 

1) Direct manipulation 

2) Parametric configuration 

3) Design tool-use 
The use of these methods in the following experiments is intended to show that 

the model of curiosity is generally applicable in models of designing and not restricted 
to a particular method of working. In particular, the use of different design methods 
shows that curious design agents can be applied at different levels of abstraction in the 
design process. 

The three design methods used are discussed in the following section to provide a 
context for the experimental work that follows. The first curious design agent explores 
a space of rectilinear drawings using direct manipulation. The second curious design 
agent explores Spirograph patterns using parametric configuration. The third curious 
design agent explores a space of “genetic artworks” using an evolutionary design tool. 
Each application is presented by first examining motivations for exploring the 
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particular space. Implementation details are given for the specific application of each 
agent, including details of application-specific processes of each agent. In each case, 
experimental results are followed by an application-specific discussion and some 
conclusions. A more general discussion of curious design agents is reserved for 
Chapter 7. 

5.1 DESIGN METHODS 
Design methods play an important role in determining what a designer can 
accomplish. Broadbent (1973) presents a survey of the different methods that 
designers, particularly architects have used to generate new designs. Design methods 
are often influenced by the development of technology, or the discovery of new 
insights into the nature of the world. The three classes of design methods presented 
here – direct manipulation, parametric design, and design tool use – are typical of the 
methods that designers engage in daily. The specific implementations – rectilinear 
sketching, pattern generation and interactive evolutionary design – are simple 
examples of these design methods but sufficient to show the potential of curious 
design agents. 

5.1.1 Direct Manipulation 
A digital computer, without the assistance of robotics, cannot directly manipulate 
anything other than the 0s and 1s that make up the binary data used to perform 
computations. Direct manipulation as used in this context means that an agent changes 
the same representation that it senses. When engaged in design by direct manipulation 
an agent affects the same binary data that it later senses. The data may be organised 
into a composite structure and the agent’s effectors may manipulate these composite 
structures, however, the result is that the agent senses the same data that is affected. 
Direct manipulation permits the finest control over the design process and allows 
curiosity to play a role in every aspect of the design process from conceptual to detail. 

5.1.2 Parametric Design 
In contrast, an agent that engages in parametric design affects changes in some, 
presumably high-level, representation of a design artefact that in turn changes some 
other data held in the external environment that the agent later senses. There is at least 
one degree of separation between the effects of the agent on the environment and the 
data that is later sensed. When engaged in parametric design the agent uses a tool that 
renders an artefact according to supplied parameters. Parametric design allows an 
agent to explore domains where the skills required to produce an artefact using direct 
manipulation are not supported by its effectors or require skills that are too complex 
for the agent to learn. 

5.1.3 Design Tool-Use 
An agent that uses a design tool to search a design space does so by changing the 
process implemented by the tool and sensing the products of the new process. Unlike 
the tools used in parametric design, a design tool conducts an independent design 
process, possibly a complex one. Using a design tool allows an agent to take another 
step away from the specifics of the domain. The use of design tools allows simple 
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design agents to explore complex design spaces without having to learn complicated 
design skills. 

5.2 REFLECT-A-SKETCH 
When designer’s sketch they often discover unintended shapes emerging in their 
drawings. This phenomenon is commonly called ‘shape emergence’ and has been 
widely reported in the design research community, for a review of relevant studies 
see: Purcell and Gero (1998). Cognitive studies of designers suggest that the 
emergence of unintended shapes in a sketch plays an important role in the creative 
designing, especially in the early conceptual stages of designing. 

5.2.1 Motivation 
Reflect-a-sketch was developed as a computational model of reflection-in-action 
(Schön, 1983). More specifically, it attempts to model the reflective sketching 
processes observed in the activity of designers by Schön and Wiggins (1992) by 
modelling some ‘different kinds of seeing’. In particular, Reflect-a-Sketch can 
recognise the unintended consequences of its moves. The development of Reflect-a-
Sketch was motivated by the following conclusion made at the end of Schön and 
Wiggins’ paper: 

When we think of designing … as a conversation with materials conducted in the 
medium of drawing and crucially dependent on seeing, we are bound to attend to 
processes that computers are unable — at least presently unable — to reproduce: the 
perception of figures or gestalts, the appreciation of qualities, the recognition of 
unintended consequences of moves. (Schön and Wiggins, 1992) 

Reflect-a-Sketch was developed as a way of re-examining the current limitations 
of computers with respect to reflection-in-action. It was designed to produce simple 
rectilinear drawings, reflect upon those drawings, identify interesting (emergent) 
shapes and learn new drawing commands. 

5.2.1.1 Computationally Modelling Shape Emergence 
Computational models of shape emergence have previously been developed that can 
extract the implicit shapes within a drawing that are easily recognisable by human 
observers. Computational models of shape emergence have typically created an 
unstructured intermediate representation of a sketch and then identified emergent 
shapes by combining elements of the intermediate representation in new ways. 
Computational systems using infinite maximal lines (Gero and Yan, 1993) have 
proved successful in identifying emergent shapes (Damski and Gero, 1996), emergent 
shape semantics (Gero and Jun, 1995) and emergent patterns (Cha and Gero, 1998). 
Figure 5.1 illustrates a good example of the emergence of multiple shape 
representations from a single building floor plan using infinite maximal lines. 

Alternative computational models of shape emergence have used bitmap images 
as intermediate representations. Image processing techniques are used to find 
emergent shapes by recognising structure in the bitmap representation. Liu (1993) 
used neural networks to identify previously learned emergent sub-shapes, Edmonds 
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and Soufi (1992) used Gestalt operators to construct emergent groupings of similar 
shapes, and Tomlinson and Gero (1997) used a model of early visual processing 
developed by Grossberg and Mingolla (1985a, 1985b) to emerge optical illusions. 
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Figure 5.1: An example of the emergence of multiple representations for a floor plan 

design using infinite maximal lines (from Reffat and Gero, 1998). 

To exploit emergence in future design tasks, designers must learn about the 
initially unintended consequences of their actions. Most of the computational models 
of shape emergence have lacked the ability to learn. As a consequence all of the 
emergent shapes discovered had to be considered “interesting” and presented to a user 
for further evaluation. In contrast, the computational model of shape emergence 
presented here is capable of learning to expect emergent shapes. During the sketching 
process, Reflect-a-Sketch focuses upon the novel and unexpected aspects of its sketch 
to learn new drawing skills and expand the repertoire of sketches that it can produce. 
An earlier version of Reflect-a-Sketch was presented in (Gero and Saunders, 2000). 

5.2.2 Implementation 
Schön and Wiggins (1992) describe the reflective sketching process in terms of 
‘moving’ and ‘seeing’. The architecture of a curious agent is described here in terms 
of two subsystems that implement the ‘moving’ and ‘seeing’ processes. The ‘moving’ 
subsystems include processes implementing sensing S, effecting E, perception P, and 
action A. The ‘seeing’ subsystems include a conceptual unit C and a curiosity module, 
X incorporating a novelty detector N and an interest function I. The architecture of 
Reflect-a-Sketch is illustrated in Figure 5.2; the figure shows the representations 
constructed by each process. 

5.2.2.1 Moving 
The moving subsystem consists of the processes for drawing, sensing primitive 
elements, and perceiving more complex structures. 

5.2.2.2 Drawing 
Reflect-a-Sketch has very limited drawing and sensing capabilities: it can draw 
horizontal and vertical straight lines and it can sense the pixels values within a small 
window onto the canvas. Reflect-a-Sketch’s external environment is a bitmap canvas 
consisting of 32×32 pixels. To draw a recognisable shape, line-drawing actions must 
be grouped together into shape-drawing actions that define shape boundaries. The 
agent is limited to drawing shapes when it sketches, i.e. it cannot draw arbitrary 
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disconnected lines. This limits the possible sketches to combinations of closed 
rectilinear forms; see Figure 5.7 for an example. This simplifies the task of detecting 
emergent sub-shapes because they must be either bounded regions or combinations of 
bounded regions. 
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Figure 5.2: The architecture of the Reflect-a-Sketch agent divided into ‘moving’ and 

‘seeing’ subsystems showing the representations constructed by each process. 

5.2.2.3 Sensing 
Sensed data are transformed by Reflect-a-Sketch’s perceptual processes into a number 
of binary feature maps that represent the presence or absence of a feature at each pixel 
location. Reflect-a-Sketch perceives colours, lines and regions. Pixels of a specific 
colour are represented in a colour feature map. Reflect-a-Sketch can only draw using 
one colour, so the colour feature maps represent the foreground and background of the 
image. Horizontal and vertical line feature maps are produced using line detection 
algorithms based on (3×3) convolution matrices. Figure 5.3 illustrates the production 
of feature maps for foreground and background colours, horizontal and vertical lines 
for an example drawing. Above the horizontal and vertical line feature maps are the 
convolution matrices that produced them. 
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Figure 5.3: Example feature maps for foreground and background colours, vertical and 
horizontal lines (and the convolution matrices used to detect the lines). 

5.2.2.4 Perceiving Regions 
Reflect-a-Sketch uses a very simple yet effective algorithm to determine the bounded 
regions of a shape. The extraction of bounded regions is the basis of Reflect-a-
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Sketch’s ability to detect emergent shapes. The ‘colouring book algorithm’ is an 
extension of one of Ullman’s visual routine to determine whether a point is on the 
inside or the outside of a figure (Ullman, 1984). The algorithm works by “colouring 
in” each region of a bitmap image by flood filling each one with a different colour. 
The colouring book algorithm is illustrated in Figure 5.4. 

 

(a) (b) (c) (d) (e) 
 

Figure 5.4: The colouring book algorithm used to find minimally bounded shapes in 
sketches. The paint can icons represent the locations of the flood fill commands used to 
fill white areas of the image as the algorithm scans from the top-left to the bottom-right 
corners. The top-left corner is assumed to be background and so the background is filled 

with black from this location to match with colour of the drawn lines (a & b). Each 
subsequent white pixel initiates a flood fill at that location with a different colour (c–e). 

The algorithm begins by colouring in the background of the sketch by flood filling 
the image with the colour used to draw lines from the top-left corner. This removes 
the lines from potential inclusion as regions of interest. The colouring book algorithm 
continues by checking each pixel from the top-left corner to the bottom-right to 
determine whether it has already been filled. If a pixel has not been filled, a flood fill 
is started at that pixel location. A different fill colour is used for each flood fill 
operation, from the coloured image it is a simple matter to determine the minimally 
bounded regions by filtering the pixels by colour and separating each region into a 
feature map, as illustrated in Figure 5.5. 

 

source region 1 region 2 region 3  
Figure 5.5: The region feature maps extracted using the colouring book algorithm. 

The colouring book algorithm extracts all of the regions that represent the 
minimally bounded sub-shapes in a drawing ready for the recognition of composite 
emergent shapes. 

5.2.2.5 Perceiving Figures 
Adding together the regions extracted by the colouring book algorithm and expanding 
the foreground area by a single pixel to compensate for the loss of the drawn lines 
produces a representation of a sketch’s figure and ground. Figure 5.6 illustrates the 
process of constructing the figure for the regions extracted above. 
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Figure 5.6: The construction of a representation of an images figure and ground from the 

bounded regions extracted by the colouring book algorithm. 

5.2.2.6 Seeing 
The regions extracted by the colouring book algorithm and the figures constructed 
from the combination of those regions provide the necessary representations to detect 
emergent sub-shapes and emergent super-shapes in the sketches produced by Reflect-
a-Sketch. The ‘seeing’ subsystem of Reflect-a-Sketch processes these representations 
to produce categories for shapes and evaluate the novelty of the emergent shapes 
found. 

5.2.2.7 Conceiving Shapes 
Reflect-a-Sketch uses Self-Organising Maps (SOMs) to transform percepts into 
shapes. In this context, a ‘shape’ is a visual pattern that can be confidently assigned to 
a previously learned category. The input to each SOM is one of the feature maps 
computed by the perceptual processes converted into a vector of real numbers. 

The output of each SOM is the activation of the best matching neuron in the map. 
The activation of the best matching neuron indicates the familiarity of the input 
pattern: the more familiar the pattern the greater the activation of the best matching 
neuron. The familiarity of a shape drawing action is estimated by simply tracking the 
number of times that the drawing action has been used. This does not require a 
learning system because no categorisation of the drawing action is required; shape-
drawing actions are all uniquely identified within the memory of the agent. 

5.2.2.8 Detecting Novelty 
The familiarity of a drawing is used to determine its novelty. An unfamiliar drawing is 
novel by virtue of its atypicality. An unfamiliar drawing can also be surprising as long 
as the drawing actions that produced it are familiar. A familiar drawing can be 
surprising if the drawing actions that produced it are unfamiliar. An unfamiliar 
drawing produced by unfamiliar drawing actions is novel but not surprising. Reflect-
a-Sketch can also determine another type of conflict when two categorisations do not 
agree, e.g. the categorisation of a section of the foreground does not agree with the 
categorisation of the enclosed bounded region. To measure the degree of conflict, 
each pixel in the reconstructed representation of the input is considered as an 
independent prediction of an expected feature. The degree of the conflict is calculated 
as the pixel-by-pixel difference between the constructed representations multiplied by 
the confidence of the categorisation. 

5.2.2.9 Modelling Interest and Boredom 
Interest is modelled using a linear hedonic function; the interest in a sketch is simply 
the novelty of that sketch. Reflect-a-Sketch also maintains an on-going measure of the 
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interestingness of the design process. The agent’s interest in the design process is 
calculated as the mean of its interest in the last 10 sketches. A minimum threshold on 
the agent’s interest in the design process is used to model the onset of boredom. If the 
agent’s interest falls below the boredom threshold the agent is determined to be under-
stimulated or “bored” and seeks to find new stimulation through diversive 
exploration. 

5.2.2.10 Learning Interesting Shapes 
Reflect-a-Sketch learns to draw novel shapes that it finds interesting to expand its 
range of possible sketches. The process of extracting a bounded space region and 
constructing a new shape drawing action is illustrated in Figure 5.7. Reflect-a-Sketch 
can learn shape-drawing actions for novel regions and novel figures. When Reflect-a-
Sketch discovers a novel figure it learns a shape-drawing action for the whole figure, 
including internal lines, so that it does not have to rediscover the interesting 
combination of primitive shapes to use it in the construction of more complex figures. 

 

lines source regions novel region 
 

outline 
 

(0,0)→(8,0) 
(8,0)→(8,4) 
(8,4)→(4,4) 

(4,4)→(4,8) 
(4,8)→(0,8) 
(0,8)→(0,0) 

 
Figure 5.7: Construction of new shape drawing command from an extracted bounded 

space region. 

Reflect-a-Sketch makes no attempt to generalise the shape-drawing actions other 
than to specify them relative to the top-left hand corner of the shape boundary to 
allow them to be drawn anywhere on the external canvas. This means that rotated 
versions of the same shape are considered unique, e.g. Region 1 and Region 3 in 
Figure 5.6 are learned as separate shape-drawing actions rather than rotated versions 
of the same shape. Consequently, Reflect-a-Sketch learns many more shapes than are 
strictly necessary, but can also explore the space of possible sketches with a simple 
drawing policy. 

5.2.2.11 Exploring the Space of Sketches 
Reflect-a-Sketch uses two very simple heuristics to control the production of new 
sketches based on its interest in recent sketches. These two heuristics model diversive 
and specific exploration respectively: 

1) Diversive exploration: If interest falls below boredom threshold then 
increase the number of shapes drawn per sketch by 1. 

2) Specific exploration: If the most recent sketch was so interesting as to 
have resulted in the learning of a new shape drawing action then reset 
the number of shapes per sketch to 1 and use the new shape drawing 
action. 

The first heuristic increases the number of shapes used per sketch in an attempt to 
promote stimulation and produce new emergent shapes as a consequence of the 
interactions between shapes drawn in the same sketch. The second heuristic restarts 
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the search for new emergent shapes using one instance of the most recently learned, 
i.e. interesting, shape as a starting point. This reduces the potential stimulation by 
reducing the number of shapes drawn while also allowing the agent to focus on the 
specifics of the new shape to learn perceptual categories. 

5.2.3 Results 
A screenshot of an early implementation of Reflect-a-Sketch is shown in Figure 5.8. 
The figure shows the extraction of a region of interest into the sensory and perceptual 
processes labelled “Literal Apprehension” and “Emergent (Space) Apprehension” 
respectively, after Schön and Wiggins (1992). This version of the program can only 
detect emergent sub-shapes; it cannot detect emergent figures and so is not able to 
construct complex sketches consisting of multiple instances of composite shape-
drawing actions. Despite this it was still able to produce some complex sketches 
having started with a single shape-drawing action for an 8x8 pixel square. 

Figure 5.8 shows that the inputs and the representations constructed by the literal 
and bounded-space learning systems are in conflict: the input bounded space 
representation shows a rotated L-shape while the learning systems have both 
constructed equivalent representations of a square. This is a significant mismatch and 
indicates the degree of novelty of the situation. Novelty is measured in these 
circumstances as a value proportional to the highest confidence of the two learning 
systems, which in this case is the confidence of the literal apprehension learning 
system. 

 

 
Figure 5.8: A screenshot of an early implementation of Reflect-a-Sketch in operation 

showing the current design and the different representations constructed. 

Figure 5.8 also shows that the emergent L-shaped region perceived by the 
bounded space processes has been analysed and an image of the boundary of the 
emergent shape has been generated. Figure 5.9 illustrates a typical progression of 
emergent shapes learned by Reflect-a-Sketch over the course of a short run. 
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Figure 5.9: A typical progression of drawings considered interesting by Reflect-a-

Sketch. 

Figure 5.10 is a screenshot of the final version of Reflect-a-Sketch. The major 
difference between the two versions is that the final version includes representations 
of the figure as well as the bounded sub-shapes. The displays for each representation 
include a trace of recently detected novelty. 

 
Figure 5.10: A screenshot of the final version of Reflect-a-Sketch in operation showing all of the 

representations built for a complex sketch. 

Two “styles” of sketches emerge from the explorations of Reflect-a-Sketch; 
firstly, there are sketches with complex internal structures favoured by an interest in 
emergent sub-shapes; and secondly, there sketches with complex boundaries favoured 
by an interest in emergent super-shapes. 

 

(a) (b) (c)  
Figure 5.11: Some “interesting” sketches produced by Reflect-a-Sketch: (a) emergent 
subshapes, (b) emergent super-shapes, and (c) emergent sub-shapes and super-shapes. 

Figure 5.12 illustrates the curious learning behaviour of Reflect-a-Sketch as the 
number of shape-drawing actions learned over time. The steps in Figure 5.12 show 
that the agent learns new drawing actions in short bursts when an interesting sketch is 
produced, indicating that several emergent shapes tend to appear together. The 
initially long plateau indicates the early learning process when the SOMs are 
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establishing an initial arrangement and the confidence in all predictions is low, 
resulting in little or no novelty being detected. 
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Figure 5.12: The number of shape drawing actions learned by Reflect-a-Sketch over the 

first 60 time steps of a run. 

5.2.4 Analysis 
The search for novelty promotes the construction of complex forms in Reflect-a-
Sketch. The nature of these forms depends upon the type of novel shapes that the 
agent is searching for. An interest in emergent subshapes leads to a development of 
forms with complex internal structures, often with simple boundaries. An emphasis on 
novel emergent figures leads to complex boundaries, sometimes constructed using 
simple components. 

In both cases, the curious agent quickly produces forms that are beyond its limited 
ability to comprehend and the agent does not find any more interesting forms. In the 
first case, the internal structures often become so complex that the only subshapes to 
be found are small rectangles of which the agent quickly learns a full catalogue. In the 
second case, the agent quickly produces figures that extend beyond the bounds of the 
region of interest and so cannot be comprehended as bounded shapes to be learned by 
the agent. 

5.2.5 Discussion 
Reflect-a-Sketch extends previous computational work in shape emergence by adding 
a learning component that can come to expect emergent shapes. This is an important 
aspect of the curious behaviour of the agent, guiding the process of learning new 
drawing skills and hence the expansion of design spaces. Importantly, Reflect-a-
Sketch quickly expands its repertoire of drawing skills and produces drawings that 
were impossible given its initial skill set. The inclusion of a curious component makes 
the process of emergence more like that described by Gero as a creative design 
process (Gero, 1994b). 
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5.2.6 Conclusion 
Reflect-a-Sketch successfully demonstrates the role that curiosity can play in the 
direct manipulation of material. However, the processes implementing curiosity are 
few (and simple) compared to the processes that provide it with the data. The level of 
sophistication required in the systems implementing the ‘moving’ aspects of the 
reflective sketching process makes it an awkward vehicle for the study curious 
behaviour. Possible future research directions using a similar architecture to Reflect-a-
Sketch are discussed in Chapter 7. 

To continue research into the curiosity it was decided that, like designers in the 
real world, curious agents should use more abstract descriptions of the design artefact 
in their explorations of design space. Hence, the following agent uses a parametric 
design method to explore the space of Spirograph patterns. 

5.3 A SPIROGRAPH EXPLORER 
This section presents some experiments with an agent that explores the parametric 
design space of patterns generated using a simulated Spirograph. The goals of this 
experiment are to examine the behaviour of a curious agent as it explores a parametric 
design space and to illustrate the difference in the representations built by curious and 
non-curious design agents.  

5.3.1 Motivation 
The Spirograph2 epitomises a simple parametric design tool. Spirograph sets consist 
of an array of plastic gears. To draw a pattern one gear is fixed to a piece of paper and 
a second gear is moved around it while tracing its path by pushing a pen through a 
hole in the interior. This wonderfully simple toy has charmed children for over 30 
years and has no doubt sparked an interest for geometrical patterns in budding 
architects and designers. 

5.3.1.1 The Geometric Lathe 
Long before the Spirograph was created to entertain, similar technology was being 
used to generate complex geometrical patterns for the far more serious purpose of 
defeating forgery of banknotes. 

Complex geometrical patterns have been used as anti-forgery devices on 
banknotes since the 19th Century. The machine used to generate the complex patterns 
was called the Geometric Lathe; its invention was heralded as a major breakthrough in 
financial security: 

[...] the Geometric Lathe has been esteemed, at all times, as the sheet anchor of public 
security against the dangers of forgery. […] The least change of a wheel of the eccentric, 
or turn of a set screw, produces a new pattern that shames the kaleidoscope. It defies the 
efforts of the mathematician to calculate the extent of its variations; […] and when the 
transfer press is brought to its aid, […] human ingenuity fails in the attempt to produce 
an imitation. 

                                                 
2 Spirograph is a registered trademark of Hasbro. 
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Extracted from: “Remarks on the Manufacture of Bank Notes and other Promises to 
Pay: Addressed to the Bankers of the Southern Confederacy” (1864) 3 

Figure 5.13 displays a $5,000 U.S. tax proof approved in 1872 that is a wonderful 
example of the intricate designs that were produced using the Geometric Lathe. 

 

 
Figure 5.13: A proof for a $5,000 U.S. tax stamp approved in 1872 for use in the 

taxation of a multi-million dollar expansion of the Union Pacific Railroads but never 
used. It is considered one of the finest examples of its kind. 

The security provided by the patterns produced by the Geometric Lathe lay in the 
difficulty of reversing the process used to generate them, i.e. determining the correct 
settings for the Geometric Lathe to produce a desired pattern. Modern encryption 
technologies work in similar way by exploiting the difficulty of the process of 
factoring large numbers work (Rivest et al., 1978). 

Although more modern security devices have superseded the geometric patterns as 
the primary means of securing important documents against forgery, these patterns 
can still be found on many banknotes, as well as other important documents such as 
stocks, bonds, and passports. 

The use of the Geometric Lathe is a classic example of using emergence in design. 
The security offered by the patterns came primarily from the emergence of distinctive 
patterns from the intricate latticework of lines. Perhaps more than any other example 
of design, the design of these patterns relied on the ability of the designer to determine 
the unexpectedness of the patterns generated. The agent presented in this section 
attempts to mimic this search in the simpler domain of Spirograph patterns. 

                                                 
3 Available on the Internet at http://docsouth.unc.edu/banknote/frontis.html 
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5.3.2 Implementation4 
The pattern that a Spirograph generates when one wheel is rotated around another is 
known in mathematics as an epicycloid. The mathematics of epicycloids is illustrated 
in Figure 5.14. 
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Figure 5.14: The mathematics of epicycloids: (a) path of epicycloid shown along arc from its starting 

point P to (x, y) at α around fixed gear C of radius r1 and β around moving gear M of radius r2, (b) 
epicycloid generated with r2 = r1 / 2, and (c) epicycloid generated with r2 = r1. 

Spirograph patterns generated using an arrangement of circular gears can be 
mathematically modelled as epicycloids using the following equations: 
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5.3.2.1 Typical Spirograph Patterns 
Figure 5.15 illustrates the variety of Spirograph patterns that is possible for a small 
selection of random values for r1 and r2.  

 r2 

r 1
 

 
Figure 5.15: A random sample of Spirograph patterns with a small selection of random 

values for the fixed gear radius (r1) and the moving gear radius (r2). 

                                                 
4 The Spirograph pattern generator described in this section can be found on the accompanying CD-
ROM: see Appendix B for details. 
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Visually, two broad categories of Spirograph patterns can be distinguished in 
Figure 5.15: simple patterns produced with a few rotations of the moving gear around 
the fixed gear and complex patterns produced with many rotations. The number of 
rotations is dictated by the greatest common denominator of the two radii. Figure 5.15 
shows that for a random sample of the design space, complex patterns are far more 
common. 

5.3.2.2 A Curious Spirograph Explorer 
The architecture of the curious agent used in this experiment is illustrated in Figure 
5.16. The high level functions of conception and curiosity are similar to those in 
Reflect-a-Sketch. The processes for perception and action are far simpler than those 
for Reflect-a-Sketch. Perception simply converts sensed data into inputs suitable for 
categorisation. Action issues parameter change commands to the effectors. 
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Figure 5.16: The curious agent for Spirograph exploration. 

5.3.2.3 Parametric Design Actions 
A curious design agent was set the task of searching a sub-space of possible 
Spirograph patterns bounded by gear ratios r1:r2 from -100:1 to 100:1. The agent 
explored the space of possible Spirograph patterns by changing the value of the ratio 
directly, rather than the values of the gear radii, as this provided a more predictable 
space of patterns because similar gear radii can produce wildly different patterns, 
whereas similar ratios generally produce similar patterns. The patterns were analysed 
by the agent as 32x32 pixel greyscale images. At this resolution many of the finer 
details of the patterns are lost and the classification of the patterns is based on larger 
scale features. 

5.3.2.4 Spirograph Pattern Exploration 
The curious design agent explores the space of Spirograph patterns by varying the 
amount that the gear ratio is changed at each step. When the agent finds interesting, 
i.e. novel, patterns it reduces the gear ratio to explore the space more thoroughly. 
When the agent finds patterns that are uninteresting it increases the gear ratio to 
quickly explore other design subspaces. The novelty of a pattern is detected using a 
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SOM as described in the previous chapter. The agent uses a linear hedonic function to 
determine interestingness from detected novelty. 

5.3.3 Results 
The novelty detected by the curious agent during a search of the design space for the 
first 200 time steps is shown in Figure 5.17. The chart shows that the curious design 
agent detects little significant novelty while performing an initial search of the design 
space, i.e. up to time step 55 marked on the chart. The lack of sustained interest in any 
patterns is not surprising; the agent has no categories of typical patterns with which to 
compare new patterns to determine novelty. After it has constructed some typical 
pattern categories it can start to be interested in novel patterns. The agent then 
repeatedly finds interesting patterns, indicated by peaks in novelty and will remain 
with a novel pattern to learn a category for it, producing a tailing-off in the novelty 
detected as the category is constructed. 
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Figure 5.17: A chart showing the novelty detected over time for the first 200 time steps 

of a typical run. The chart shows an initial period where little novelty is detected 
followed by a series of peaks as novel patterns are discovered. The chart also shows the 

tailing-off of the novelty detected after each peak as the novel pattern’s category is 
learned. 

5.3.4 Analysis 
To better understand the behaviour of this curious design agent it is useful to take a 
look at the representations of the design space that it constructs during exploration. 
This section compares the representation of a curious and a non-curious agent 
exploring the space of Spirograph patterns. 

5.3.4.1 Visualising Curious Representations 
SOMs are often used to visualise complex multi-dimensional vector spaces. To 
visualise the differences between representations built using curious and non-curious 
agents two agents were set the task of learning the space of Spirograph patterns. The 
non-curious agent explored the space of patterns by performing a “random walk” 
through the possible ratio values, perturbing the ratio slightly at every step. The 
curious agent explored the space as described above. Each agent explored the design 
space for 400 time steps. 

Figure 5.18 shows the prototype representations learned by the SOMs of the two 
agents. Each grid shows the two-dimensional map of the design space that has been 
learned. Each cell corresponds to a neuron in the lattice of the SOM and shows the 
prototypical image of the category it represents. The prototype is an average of the 
images of the patterns that are contained within the category. 
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Although the networks have mapped the design space differently, some 
correspondences can be found, e.g. the categories found in the bottom half of the non-
curious agent’s map (D1–F6) roughly correspond to those found in the top-left corner 
of the curious agent’s map (A1–D4). 

The maps share similar representations for typical patterns, e.g. compare the 
prototypes E1, E5, F5 in the non-curious agent’s map with A3, C4, D3 in the curious 
agent’s map respectively. However, the maps differ considerably in their 
representation of novel patterns. For example, the non-curious agent’s map has only a 
few categories in rows A and B that are similar to those found in rows E and F and 
columns 5 and 6 of the curious agent’s map. In fact, the curious agent’s map devotes 
nearly 50% of its categories to different types of novel patterns whereas only ~15% of 
the categories in the non-curious agent’s map represent unique novel patterns.  
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Figure 5.18: The above maps show the bitmap images of the prototype patterns 

represented by the neurons of two 6x6 SOMs trained with (a) a random selection of 
patterns chosen by a non-curious agent, and (b) a set of ‘interesting’ patterns chosen by a 

curious design agent. 

5.3.5 Discussion 
Figure 5.17 shows that little novelty is detected in the first 50 time steps of searching. 
During this phase the lack of novelty means that mutations of the design parameters, 
i.e. the ratio of gears, will be high. Consequently, the agent begins by learning from a 
fairly random sample of patterns and as Figure 5.15 illustrates the agent is likely to be 
exposed to far more complex patterns than simple ones. The result is that the agent 
learns a set of categories for typical, complex patterns first. 

Once an initial set of pattern categories has been learned, novel patterns, i.e. 
simple patterns, can be recognized. Figure 5.17 shows that the agent spends most of 
its time beyond the time step 55 learning novel patterns in some cases spending as 
long as 10 time steps learning a single pattern, indicated by the slow decay in the 
novelty detected. The two phases of learning are reflected in the differences between 
the SOMs produced by the curious and non-curious agents shown in Figure 5.18. The 
differences in the representation of atypical patterns between the maps reflect the 
prolonged learning given to novel patterns as a consequence the actions of the curious 
agent. 
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The improved representation of novel patterns in the curious agent’s map means 
that it will no longer find these patterns to be novel and will have to search for new 
patterns in order to maintain interest in the design space. The neural networks used in 
the above experiment are relatively small compared to the design space, and so are 
never likely to accurately represent all of the possible Spirograph patterns. However, 
larger neural networks or agents that use ART networks may be able to learn 
representations for the entire space of Spirograph patterns so well that they can 
become “bored” with the entire space, potentially triggering the exploration of new 
design spaces. 

5.3.6 Conclusions 
Unlike Reflect-a-Sketch, the curious Spirograph explorer does not have the capability 
of expanding the design space it is given; instead it identifies the most interesting 
subspaces to concentrate its learning efforts upon. Consequently, the agent presented 
here models possible innovation within the space, finding unexpected patterns, but not 
creativity as defined by Gero (1994b). To model more creative forms of designing the 
agent would have to be given the opportunity to expand the ranges and number of 
design variables. This takes the agent beyond the scope of simple parametric design 
towards design methods such as Dimensional Variable Expansion, proposed by Cagan 
and Agogino (1991). 

Many design problems can be cast as parametric design problems and curious 
design agents such as the one presented here may be useful in exploring the 
parametric design spaces for interesting, atypical designs; particularly when the 
number of parameters is large enough to make manual exploration tedious. Another 
example of a curious design agent exploring parametric design spaces is given in the 
next chapter. The following application presents a different way to decompose the 
design task between agent and tool. 

5.4 CURIOUS EVOLUTION 
The final study in this chapter demonstrates the ability of a curious design agent to 
guide the design process of an evolutionary design system. Unlike the previous two 
applications, the curious design agent presented here does not manipulate variables 
that directly affect products. Instead it issues commands, in the form of selection 
preferences, to an interactive evolutionary design system to affect the design process. 
The curious design agent provides judgements of interestingness in much the same 
way that human users do when using interactive evolutionary design tools (Sims, 
1991; Todd and Latham, 1992). 

5.4.1 Background 
In “The Clockwork Muse” Martindale (1990) presented an extensive investigation 
into the role that the search for novelty plays in literature, music, visual arts and 
architecture. He concluded that the search for novelty exerts a powerful force on the 
development of artistic movements. Martindale illustrated the influence that the 
search for novelty has on creative activity with the following thought experiment, 
“The Law of Novelty”: 
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We live in a predictable world. […] Every morning we are bombarded with automatic 
“Good mornings” and routine inquiries about how we are. Our days are full of pat 
questions and equally pat replies. Imagine what would happen, however, if some of us, 
tiring of this state of affairs, decide to do something about it. Decide, indeed, to outlaw 
any and all repetition. Once something has been said, it can never be said again. Once 
something has been done, it cannot be done again. This requires no act of Congress. We 
can implement it ourselves. We can, as well, impose a sanction more severe than the 
death penalty. Anyone who says something that has already been said, or does something 
that has already been done, will simply be ignored. Someone who persists in the crime of 
repetition will find that he or she ceases to exist. No one will pay the slightest attention to 
the person. 

Martindale elaborated some of the consequences of adopting his Law of Novelty. 
For example, discourse would be forced into ever more concrete and specific forms to 
ensure that the meaning is understood while at the same time driving speakers to 
circumlocution in order to avoid repetition. For example, a salesman’s description of a 
toaster becomes an exercise in metaphors: “Rather than saying, ‘This is our newest 
model,’ something such as ‘This is the rising sun of the destroyers of leavened 
moisture,’ is called for.” 

Martindale argued that what he described was not a revolution but merely a 
magnification of the world we live in and that in fact the Law of Novelty is applied in 
its purest form in the arts. Exact replication is not allowed in any of the arts: otherwise 
the notion of forgery would be nonsense. And although artists may not be ignored 
while they are alive the rule of novelty takes effect with exceptionless brutality upon 
their deaths. It is then that they begin to be ignored. 

As well as demonstrating the application of curious design agents in the control of 
a design tool, this section presents an attempt to implement the Law of Novelty, for a 
single design agent – investigations of social applications of the Law of Novelty are 
deferred until Chapter 6 within the context of an artificial creativity simulation. The 
aim of the work presented here is to explore the relationship between searching for 
novelty, i.e. curious exploration, and elaboration of design products into increasing 
complex forms to satisfy the need for continual innovation. 

5.4.2 Implementation5 
Interactive evolutionary systems have become a popular tool for exploring aesthetic 
design spaces because they allow a human operator to generate complex designs 
without the need to manipulate design variables. The pioneers of interactive 
evolutionary systems include Richard Dawkins, Karl Sims, and William Latham 
(Dawkins, 1987; Sims, 1991; Todd and Latham, 1992). 

Dawkins first popularised this method of evolving aesthetically pleasing images in 
his book “The Blind Watchmaker” (Dawkins, 1987) with a program that evolved 
“biomorphs” – small stick figures that resembled insects, butterflies or trees 

                                                 
5 An implementation of the interactive evolutionary system used by the curious design agents is 
provided on the CD-ROM: see Appendix B for details. 
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depending on the specifics of the evolved genes6. Todd and Latham (1992) developed 
a much more complex form of interactive evolution to allow William Latham to 
evolve “virtual sculptures” that he has exhibited in galleries worldwide. Karl Sims 
developed an interactive evolutionary system that was capable of producing stunning 
artworks using techniques borrowed from genetic programming (Sims, 1991). 

Interactive evolutionary art systems are standard evolutionary systems that rely on 
user interaction to provide subjective evaluations about the ‘fitness’ of evolved 
artworks. The users of an evolutionary art system evaluate artworks based on aesthetic 
preference to guide the evolutionary process towards the generation of more 
aesthetically pleasing artworks. In general, interactive evolutionary systems have very 
small population sizes compared to standard evolutionary systems; only 9–16 
individuals per population, compared to 100s or even 1000s per population in a 
standard evolutionary system. 

5.4.2.1 The Evolution of Images 
Karl Sims is probably best known for his work developing one of the first interactive 
evolutionary art systems for complex two-dimensional bitmap images (Sims, 1991). 
Using Genetic Programming (Koza, 1992), Sims devised an evolutionary art system 
that produced artworks by evolving symbolic function trees. Two simple function 
trees are illustrated in Figure 5.19. 
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Figure 5.19: Two example function trees and their corresponding Lisp expressions that 

can be used to generate genetic artworks. 

Two genetic operators called “crossover” and “mutation” are used to generate new 
individuals from a pair of selected ‘parents’. The crossover operator exchanges a 
randomly chosen branch of one parent tree with a randomly chosen branch of the 
other parent to generate a child. Figure 5.20 shows four possible children of the two 
equations shown in Figure 5.19. 

The mutation operator requires only a single parent. It removes a branch of the 
parent and replaces it with a randomly ‘grown’ branch. The growth process begins 
with a spare node produced by the removal of an existing branch. It replaces the spare 
node with a randomly chosen operator (e.g. add, mult, sin, etc.) or terminal (e.g. x, y, 
etc.). When an operator is chosen a number of new spare nodes are created, one for 
each required input of the operator. The process repeatedly replaces spare nodes until 
they are all filled. Figure 5.21 shows four possible children produced by mutating the 
first equation shown in Figure 5.19. 
                                                 
6 See Dawkins (1989) for an interesting discussion on the evolution of evolvability detailing the 
development of the biomorph program. 
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Figure 5.20: Four possible children of (add (sin x) (mult (add x y) x)) and (cos (subtract 

(mult x x) y)). In the first two children the first equation received a branch from the 
second equation and in the second two children the first equation donated a branch. 
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Figure 5.21: Four possible children produced by mutating the parent (add (sin x) (mult 
(add x y) x)). Mutating the root node of the parent produced the third example where the 

entire tree has been replaced. 

5.4.2.2 Genetic Artworks 
To produce an image a symbolic function tree is evaluated at a set of points, typically 
between (-0.5, -0.5) and (0.5, 0.5), that corresponds to every pixel location in an 
image of a given size. The values for x and y at the terminal nodes of the tree are 
substituted with the x and y co-ordinates of the sample point and the values for every 
higher node in the tree are recalculated. The root node evaluation is then interpreted to 
produce a colour value that is assigned to the pixels of the output image. 

An example genetic artwork is shown in Figure 5.22; human participants evolved 
this particular genetic artwork over the Internet as part of the International Interactive 
Genetic Art (IIGA) project (Witbrock and Reilly, 1999). The code used to evolve 
images in the IIGA project is used in this application to evolve genetic artworks. 

Unlike the work of Sims, which uses a rich mix of computer graphics procedures 
and image processing techniques, the genetic art systems of the IIGA project use 
quaternion mathematics that deal with four-dimensional numbers. The result of 
evaluating a quaternion expression is a four-dimensional number that can be 
transformed into a three-dimensional colour vector. 
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Figure 5.22: An example of a genetic artwork interactively evolved by a human user. 

(From the archive of evolved genetic artworks in Interactive Genetic Art III.) 

5.4.2.3 A Curious Evolver 
A curious design agent, or “curious evolver”, controls the interactive evolutionary 
algorithm; it guides the evolutionary process by selecting interesting images in much 
the same way that human users guide interactive evolutionary algorithms. The images 
selected by the curious evolver are called artworks throughout this section and in the 
following chapter — the images are considered to be artworks because they play the 
role of artworks in the simulation. In this example they play the role of interesting 
images according to the subjective view of the agent and thus stimulate further 
exploration. In the system described in Section 6.2 interesting images play a role in 
sole creativity by acting as a form of currency between communicating agents. 
Importantly, the images are not considered artworks because they have any claim to 
artistic merit by human standards. The architecture for a curious evolver is illustrated 
in Figure 5.23. 
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Figure 5.23: Architecture of a curious evolver. 
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The architectures of a curious evolver and the curious Spirograph explorer, 
illustrated in Figure 5.16, are very similar, especially at the higher levels of 
conception and curiosity. The most significant differences between the two agent 
architectures are the differences in the types of actions taken and some additional 
image processing in the perception of evolved images. All of the other differences 
between the two applications are to be found in the external environment of the 
curious evolver, i.e. the interactive evolutionary system described above. 

5.4.2.4 Image Processing 
A 32x32-pixel image of each genetic artwork is produced for analysis and 
categorisation in order to determine its novelty. Although this is a low-resolution 
image it is still large enough to allow fairly complex artworks to be evolved. 

A relatively simple combination of a Laplacian edge-detector and a fixed intensity 
threshold function were used to extract a binary image of the predominant edges in an 
artwork, as shown in Figure 5.24. 

(a) (b)
 

Figure 5.24: The image processing applied to genetic artworks to extract the edge 
structure of the images, (a) the original image, and (b) the binary image produced by the 

image processing to find the most prominent edges. 

5.4.2.5 Novelty Detection 
Long-term memory is implemented as a SOM. A SOM containing a lattice of 6x6 map 
neurons is used to provide a memory of previous image as prototypes. The input to 
the SOM is the 32x32 pixel image. The relatively small size of the SOM means that the 
network provides a medium-term rather than long-term memory. Prototypes are 
“forgotten” as new areas of the design space are explored – see Section 4.2.5.2 for an 
example of a SOM being dragged across an input space. 

As the design space is explored, the SOM produces neighbourhoods of similar 
prototypes to capture the variations in a particular image type. Figure 5.25 shows the 
neighbourhoods that have formed for similar input patterns, e.g. around E2 and A5. 
The bridging of unseen areas of the design space, as demonstrated in Section 4.2.5.1 
can be seen in the mixing of the neighbourhood patterns in the intermediate areas, e.g. 
around D4. 

As in the previous applications of SOM-based curious agents, the novelty of each 
new image is measured as the distance between it and the nearest matching prototype. 
The distance is defined as the Euclidean distance between the vectors representing the 
new image and the closest matching prototype in the 1024 dimensional input space.  
The novelty values reported in the remainder of this section are the raw novelty 
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values, i.e. the values of output by the best matching neuron of the neural network. 
For the size of image used these values range between N=0 and N=32, with N=0 
being an exact match and N=32 being a complete mismatch. Interest is calculated 
using a Wundt curve hedonic function as described in Section 2.4.2. 
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Figure 5.25: The prototypes represented by the 36 neurons of a self-organising map 
having just categorised the input shown in Figure 4b at location E2. 

5.4.2.6 Exploration 
Curious exploration is implemented by allowing the agent to select the most 
interesting artwork in each generation to be the parent of the next generation. Each 
generation consists of the parent artwork and eight new artworks generated using only 
the mutation operator — evolution is restricted to using mutation only because this 
simplifies the interaction between an agent and an evolutionary system. The curious 
evolver evaluates the novelty of each member of the population before it begins to 
learn any new representations for them to ensure that the order in which the artworks 
within a population are evaluated does not affect the novelty measure assigned to 
them. This means that the curious evolver differs slightly from the previous design 
agents in that it is able to turn on and off its learning functions to enable a fair 
comparison between artworks presented simultaneously. 

5.4.3 Results 
To investigate the relationship between the search for novelty and the complexity of 
resulting artworks an experiment was conducted to compare agents with different 
preferences for novelty encoded in their hedonic functions. To measure the 
complexity of the images the fractal dimension of selected images was calculated. The 
calculation was performed on the images after image processing to determine the 
dominant edges so that the fractal dimension would be that of the images as perceived 
by the agents. The fractal dimension was estimated using the box counting method – 
this is the same method that Taylor et al. (1999) used to determine the fractal 
dimension of Jackson Pollock’s drip paintings. 

For any two-dimensional image, a measure of its fractal dimension will produce a 
value between 0.0 and 2.0, depending on how much of the space is filled in the image 
at different levels of detail. To calculate the fractal dimension of an image a series of 
grids are placed over the image and the number of boxes occupied by the feature of 
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interest in the image is counted. Figure 5.26 illustrates the process for the image-
processed artwork shown in Figure 5.24 where the edge segments are the feature of 
interest. 

 8 

Count = 14 

4 

Count = 37 
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Count = 76  
Figure 5.26: The box-counting method of estimating the fractal dimension of an image. 

The fractal dimension can be calculated manually by plotting the count of boxes 
containing features against the number of boxes per side on a log-log graph and 
performing a linear regression. The gradient of the line produced is used as an 
estimate of the fractal dimension. More information about the box-counting method of 
fractal dimension estimation can be found in Mandelbrot (1977). 

To investigate the relationship between the preferred degree of novelty and the 
fractal dimension of the resulting images, two types of agents were used. One type 
preferred novelty values of N=18 and the other type favoured novelty values of N=11. 
Three agents of each type were allowed to explore the space of genetic artworks for 
50 time steps. 

Figure 5.27 shows how the average fractal dimension of the images selected by 
the three agents in each test group changed over time. The graph shows that agents 
with a preference for greater novelty produce images with higher fractal dimensions, 
appearing to confirm Martindale’s hypothesis. 
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Figure 5.27: The development of two distinct styles of images with different fractal 

dimensions in two groups of agents with hedonic functions that peak for the values of 
novelty indicated. 

To confirm this relationship between fractal dimension and preferred novelty, 
similar tests (3 agents/group for 50 time steps) were performed for a total of 19 
different test groups with hedonic functions that favoured novelty values in the range 
1 ≤ N ≤ 19. Figure 5.28 shows that the relationship between the preferred value of 
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novelty and the fractal dimension of the resulting images is almost linear for the large 
proportion of values for preferred novelty. Performing a linear regression on the data 
points we discover that on average the fractal dimension of the resulting image goes 
up by 0.1 per unit step in novelty preferred. 
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Figure 5.28: A comparison of the average values for 3 agents of the fractal dimension of 
evolved images after 50 time steps against a range of peak hedonic values. The equation 
and dashed line show the result of performing a linear regression on the sample points. 

Visually this means that the images produced by agents that prefer greater novelty 
appear more complicated than those produced by agents that prefer lower amounts of 
novelty. Figure 5.29 displays a small gallery of images recorded as examples of 
interesting artworks by the test groups with preference for the novelty. 

5.4.4 Analysis 
How can we explain this relationship between the preferred novelty of an agent and 
the fractal dimension of the resulting images? One explanation is that the curious 
exploration of the space of genetic artworks drives the agents towards subspaces that 
have an appropriate amount of local variability to continually satisfy the need for 
novelty. Consequently, agents that prefer novel forms will tend towards areas of the 
design space that produce more complex images, as there is a great deal more 
variability between complex images than between simple ones. 

5.4.5 Discussion 
One of the reasons why interactive evolutionary design systems have become popular 
is that they allow a person to explore a design domain without having to understand 
the mechanisms of either the design generation or the evolutionary process. The 
simple architecture for the design agents used in these experiments, shows that 
curious design agents can take advantage of the same decoupling of generation and 
test in the design cycle and concentrate on producing interesting designs without the 
complications of having to control the details of how the designs are produced. 

A potential advantage of using a design tool, such as an interactive evolutionary 
system, is that it should allow a single agent to explore multiple domains without 
learning new design skills. The design process implemented by the design tool allows 
an agent to explore multiple domains using the same set of instructions. In other 
words, the design agent does not need to understand the details of the domain 
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variables in order to explore design spaces. The potential for analogical forms of 
design reasoning emerging from such inter-domain exploration make this an 
interesting direction for future research. 

N=0 N=1 N=2 N=3

N=4 N=5 N=6 N=7

N=8 N=9 N=10 N=11

N=12 N=13 N=14 N=15

N=16 N=17 N=18 N=19
 

Figure 5.29: A small gallery of artworks produced by agents with different preferences 
for novelty (N) ranging from N=0 to N=19. In each case a 3-agent group were given the 

same prototype artwork to seed their evolutionary searches. 

Another advantage of exploring design spaces using a tool as shown here is that 
there already exist many design tools that could be used by a curious design agent to 
explore new design domains with relatively little work. For example, a number of 
interactive evolutionary systems produce visual output that could be explored using 
the agents described here with only minor adjustments, e.g. Dawkins (1987), Sims 
(1991), Todd and Latham (1992), Baker (1998), Baker and Seltzer (1994; 1998), Graf 
and Banzhaf (1995), Coates (1997), Tabuada et al. (1998a; 1998b), Witbrock and 
Reilly (1999), and Lewis (2000). 

Finally, curious design agents interact with the design tool using the same means 
as human users. This makes the possibility of produce curious design agents that 
explore design spaces in a way that human users can understand a real possibility and 
suggests that curious design agents could collaborate with designers in the exploration 
of a design space by sharing the same design tools. 

5.4.6 Conclusions 
The results of this experiment appear to confirm Martindale’s hypothesis, at least for 
curious agents: the search for greater novelty produces more complex forms. The 
result that a linear relationship may exist between the preferred novelty of an agent 
and the fractal dimension of artworks produced suggests that the consequences of 
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applying the Law of Novelty may be observed in cases where there is only a moderate 
pressure to find novelty: in these cases designs may be produced with a moderate rise 
in complexity over those produced with no preference for novelty. More research is 
required to determine whether this might be the case in general, and whether it applies 
in human creativity as well as curious exploration modelled here. 

5.5 CONCLUSIONS 
This chapter has presented experiments with curious design agents that have explored 
issues surrounding their use in computational models of creativity, in particular: 

1) Some example implementations of curious design agents using the 
framework given in Chapter 3 have been demonstrated. 

2) The implementations have demonstrated that curious design agents 
can be applied using three different modes of design interaction. 

3) The experiments have provided examples of design spaces with 
different degrees of complexity explored by curious design agents. 

4) The results have provided insights into the exploratory behaviour of 
curious design agents, e.g. the punctuated discovery of emergent 
shapes in Reflect-a-Sketch. 

5) The results have also provided insights into the effects that curious 
behaviour has upon the long-term memories of curious design agents. 

6) Analysis of the products of curious design agents has suggested a 
strong link between preferred novelty and the complexity of resulting 
works. 

This chapter has demonstrated that curious design agents can explore design 
spaces using a number of different methods. The model of curiosity achieves this 
generality because it is concerned with the internal processes involved in learning and 
not the specifics of the design problem. 

The methods described in this chapter offer different possibilities for developing 
future models of innovative and creative designing. The development of curious 
agents that directly manipulate design materials offers the possibility to develop 
detailed models of creative activity such as sketching. In these models, the functions 
implementing curiosity make up a relatively small part of the whole system, but they 
perform the important function of guiding the exploration of design possibilities 
within a reflective conversation with the design medium. Unfortunately, the number 
and complexity of the support systems needed to develop such an agent is formidable. 

The second design method examined in this chapter, parametric configuration, 
reduces the number of complex support systems for a curious design agent, but at the 
cost of specialising it to the exploration of a domain using a specified set of 
parameters. This approach may be useful in design tasks where it is desirable for an 
agent to find innovative solutions within a specified design space. The example 
system shows that the representations that such an agent builds of the design space is 
different from those of an agent that explores the space without a bias to find novel 
designs. The “map” of the design space generated by a curious design agent highlights 
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atypical designs and this may prove a useful tool when searching good places to look 
for innovative design solutions. 

The curious design agents that use design tools show the most promise for 
developing sophisticated models of designing without spending time developing 
highly complex design agents. The decoupling of the design process from the more 
strategic guidance of the design process towards interesting design solutions allows 
curious design agents that use tools to be applied with relative ease to any domain that 
they can sense appropriately using design tools that they have the abilities to control. 
Interactive evolutionary design tools may provide an excellent vehicle for future 
curious design agent research as plenty of examples already exist of evolutionary 
design systems that could be controlled by a curious design agent that simply knows 
how to evaluate the interestingness of design products. 
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Chapter 6  

Designing for Other Agents 

This chapter extends the work presented in the previous chapter by presenting two 
novel applications of curious design agents that produce designs evaluated by other 
agents. The applications presented are autonomous design systems that require no 
human intervention for them to exhibit interesting design behaviour. 

The aim of this chapter is to show that curious design agents can be used to study 
social creativity. The computational study of social creativity has been neglected 
because of the difficulties of developing complex design systems that can interact 
with real-world creative fields. The approach taken here is to use the ability of curious 
design agents to determine the potential interestingness of a design that was 
demonstrated in the previous chapter as the basis for social definitions of creativity 
valid within a closed simulation consisting of other curious design agents. 

The first application presents an agent that explores a non-visual design space for 
interesting emergent behaviour in a crowd of pedestrian agents. The pedestrian agents 
act as consumers of the design agent’s work, returning evaluations based on their 
individual experiences. The second application shows how multiple curious design 
agents can be used to develop models of social creativity within a peer group sharing 
works and evaluations. 

6.1 DOORWAY DESIGN FOR EMERGENT CROWD BEHAVIOUR 
Computer models of pedestrian movement have been used to provide valuable tools 
for designers when planning or modifying pedestrian areas in large buildings like 
railway stations or shopping malls (Major et al., 1998). The use of pedestrian agents 
in this work is not to simulate the details of human group behaviour, but to illustrate 
how the complex behaviour of consumers, in this case pedestrian agents, can have 
unexpected consequences on the design process. 
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6.1.1 Motivation 
The applications of curious design agents presented in the previous chapter were all 
within visual domains. Visual emergence played an important role in each case as the 
agent curiously explored the space of possibilities. Emergent forms are unexpected 
and as such are sources of novelty and surprise. 

The computational model of curiosity presented here has been developed in 
recognition of the fact that design emergence is more than just shape emergence: it 
models an interest in the emergence of unexpected group behaviour in crowds of 
simulated pedestrians. The task of the curious design agent is to explore a space of 
possible doorway designs that allow crowds of simulated pedestrians to pass in 
opposite directions. 

While the problem of designing a doorway is conceptually simple, the complex 
interactions between the pedestrians mean that emergent group behaviours play a 
critical role in determining the performance of different designs. Therefore the initial 
statement of the design problem is necessarily ill defined: it cannot include a 
description of every relevant detail of emergent group behaviour in advance. This 
provides a similar problem to those faced by human designers: our design agent’s task 
includes both problem finding and problem solving. 

6.1.2 Implementation 
The design agent used in these experiments is similar to the Spirograph explorer 
presented in Section 5.3; both agents use parametric configuration to explore design 
spaces. The main difference between the two agents is that the agents used here sense 
a much smaller number of variables; only two variables representing agent 
evaluations of doorways compared to the 1024 pixel values for each Spirograph 
pattern. As is often the case, presenting the design agent with a higher-level 
representation of a design problem dramatically reduces the complexity of the 
problem facing the agent; despite tackling the closest thing to a “real design problem” 
the curious design agent presented here is the simplest and has the easiest learning 
task. 

6.1.2.1 Learning and Novelty Detection 
The agent in this application uses two Habituated Self-Organizing Maps (HSOMs) to 
estimate the novelty of a situation (Marsland et al., 2000c). The first HSOM estimates 
the novelty of a design by categorizing a representation of the design solution. The 
second HSOM estimates the novelty of the performance of the design by categorizing a 
profile of the design situation that includes representations of the design solution, the 
design problem and an evaluation of the design’s performance. 

The inverse of the novelty detected by the first HSOM is used to estimate the 
familiarity of a design. The output of the second HSOM is used to estimate the novelty 
of the design performance.  The novelty of a design situation is calculated as a 
product of the familiarity assigned by the first network and the novelty assigned by 
the second. Consequently, significant novelty is only detected when a familiar design 
has an unfamiliar performance. 



 76

6.1.2.2 Pedestrian Agents 
A simple crowd management problem is used to illustrate the behaviour of our 
curious design agent. The problem is to design a doorway to facilitate the efficient and 
comfortable movement of crowds of pedestrians travelling in opposite directions. A 
pedestrian simulator was developed to evaluate doorway designs. A screenshot of the 
pedestrian simulator is shown in Figure 6.1. 

 
Figure 6.1: Screenshot of pedestrian simulator running a crowd simulation for a double 

doorway design. The black dots represent pedestrians moving from left to right; the white 
dots are pedestrians moving right to left. 

6.1.2.3 The Social Force Model 
The “social force model” is a microscopic model of pedestrian behaviour that 
simulates the behaviour of individual pedestrians to model self-organising phenomena 
in crowds (Helbing, 1991). Helbing and Molnár (1995) developed the social force 
model of pedestrian behaviour to simulate the pedestrian crowd movements to gain a 
better understanding of empirical results. 

The “social forces” in the model do not represent forces exerted upon a pedestrian; 
rather they are an approximation of the internal motivations of the individuals to move 
in certain directions. Motivations include moving away from walls, keeping together 
with group members and moving towards goals. 

Despite its simplicity, computer simulations have shown that the social force 
model is capable of realistically describing several interesting aspects of collective 
pedestrian behaviours observed in empirical studies (Helbing and Molnár, 1997). The 
social forces modelled in these experiments are listed in Table 6.1. Detailed 
mathematical descriptions of these forces can be found in Helbing and Molnár (1995). 

 
 Description of social force 
1. Pedestrians are motivated to move as efficiently as possible to a destination. 
2. Pedestrians wish to maintain a comfortable distance from other pedestrians. 
3. Pedestrians wish to maintain a comfortable distance from obstacles like walls. 
4. Pedestrians may be attracted to other pedestrians (e.g. family) or objects (e.g. posters). 

Table 6.1. The social forces modelled in the simulations of pedestrian crowds. 

6.1.2.4 Evaluating Virtual Environments 
Designs are evaluated using mathematical performance measures suggested by 
Helbing and Molnár (1997) that evaluate the efficiency and discomfort for each 
pedestrian agent moving through an environment. Efficiency is measured for a 
pedestrian as the average difference between the speed it is walking towards its goal 
and its desired walking speed. The efficiency of an environment, E, is calculated as 
shown in Equation 1.1, where N is the number of pedestrians α  and the bar denotes a 
time average, αvr denotes the velocity of an agent α , αer  is a unit vector indicating its 
desired direction of travel and 0

αv  denotes its desired speed.  
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Discomfort7 is calculated as a function of the number of direction changes during 
a simulation that a pedestrian must perform in order to negotiate the built environment 
and other pedestrians. The discomfort measure, D, reflects the frequency and degree 
of sudden velocity changes, i.e. the level of discontinuity of walking due to necessary 
avoidance manoeuvres. 
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Hence, the optimal configuration of an environment regarding the pedestrian 
requirements is the one that maximizes its evaluations of efficiency and minimizes its 
evaluations of discomfort. Like an architect, the primary concern of the design agent 
used here is the “subjective experience” of the pedestrian agents visiting the 
environment it has designed for them. The emergence of self-organising behaviour at 
the doorway translates into different levels of efficiency and comfort reported by the 
pedestrian agents that may or may not have been predicted given experiences of 
similar designs. 

It should be stressed that our curious design agent does not attempt to optimise its 
designs in the computational sense. Instead the design agent is motivated to explore 
the space of possible designs. It is equally motivated to investigate good and bad 
designs, e.g. inefficient designs can be interesting if their inefficiency is unexpected. 

6.1.3 Experiment 1: Assessing the Novelty of a Two Door Design 
To illustrate the judgement of interest by a curious design agent in different doorways, 
three designs for a doorway were created. The three doorway designs were for a 
narrow door, a wide door, and a combination of two narrow doors, as shown in Figure 
6.28. The aim of this experiment is to show how a curious design agent can identify 
the onset of interesting emergent crowd behaviour from the unexpected evaluations 
given by pedestrian agents. 

6.1.3.1 Method 
The doorway designs were tested using different numbers of pedestrians 
simultaneously trying to get through the doorway, crowds ranged in size from 1 to 51 
pedestrians in increments of 10. The efficiency and discomfort measures from the 
simulations were combined into a single evaluation measure for each simulation. The 
best evaluations of three trials conducted at each crowd size are shown in Figure 6.3. 

Unsurprisingly, all doorways performed equally well with only one pedestrian 
passing through it at a time. As the number of pedestrians increases the crowds 
display an oscillatory behaviour around doorways where one group of pedestrians 
gains control of the whole door at a time. The control of the doorway switches back-

                                                 
7 Helbing and Molnar (1997) refer to this performance measure as uncomfortableness. 
8 Videos of typical simulation runs with narrow, wide and double doors can be found on the 
accompanying CD-ROM: see Appendix B for details. 
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and-forth in direction as the numbers of pedestrians on either side of the doorway 
change. 

 

 
(a) Narrow door (5 units wide) 

 

 
(b) Wide door (10 units wide) 

 

 
(c) Double door (2x5 unites wide)  

Figure 6.2: Screenshots of the simulations of pedestrian flow through (a) a narrow, (b) a 
wide, and (c) a double doorway design with a crowd of 40 pedestrians. The black circles 
indicate pedestrians travelling from left-to-right across the doorway and the white circles 

indicate pedestrians moving from right-to-left. The feint lines either side of each 
doorway indicate the targets that each agent walks towards to pass through the doorway. 

The performance of the narrow doorway design quickly deteriorates to give 
consistently bad evaluations as the number of pedestrians increase. The wide doorway 
design maintains a very high performance for 11 pedestrians but its performance 
reduces dramatically, by almost 30%, as the number of pedestrians increases to 21. 
The performance of the wide door degrades more slowly over as the crowd sizes 
continue to increase from 31–51 pedestrians. 

The performance of the double doorway design degrades even more slowly than 
the wide doorway design. For small crowds with less than 11 pedestrians the wide 
doorway design performs better but as the numbers of pedestrians increase the double 
doors outperform the wide door. 

The double doorway design’s superior performance in crowded conditions is a 
consequence of an emergent organisation. The two doors become specialised in the 
transfer of pedestrians moving in a single direction for relatively long periods of time. 
This can be seen in the double doorway simulation shown in Figure 6.2, pedestrians 
travelling from left to right pass through the top door while pedestrians travelling right 
to left pass through the bottom door. 
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Figure 6.3: The best combined efficiency and discomfort evaluations for narrow, wide 

and double doorway designs for different crowd sizes (1–51 pedestrians). 
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6.1.3.2 Results 
The evaluations of each doorway design were presented to a curious design agent in 
ascending order of pedestrian numbers. The evaluations of the narrow doorway were 
presented first, the wide doorway evaluations second and the evaluations of the 
double doorway were presented last. The best novelty measures of three trials are 
presented in Figure 6.4. 
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Figure 6.4: The greatest novelty detection for narrow, wide and double doorway designs 

for different crowd sizes (1–51 pedestrians).  

Very little novelty was detected for the narrow doorway design at any crowd size. 
This is due to the lack of experiences against which the novelty detector could 
compare performances and the fact that the narrow doorway had consistently bad 
performance with more than one pedestrian. 

The relatively high (~0.6) novelty measure for the wide doorway simulations with 
11, 21 and 31 pedestrians indicate the improved performance of the wide doorway 
over the narrow doorway. The novelty of the wide doorway design drops at larger 
crowd sizes as the characteristics of the wide doorway are learned. 

The novelty assessments of the double doorway design show very high novelty 
measures for simulations using 21 pedestrians, highlighting the resistance of the 
double doorway design to the fall in performance suffered by the wide door. The 
subsequent levels of novelty for simulations involving 31, 41 and 51 pedestrians 
reflect the relative differences in evaluations as the advantages of the double door 
design are maintained and the characteristics of the new design are learned. 

The results of this experiment show that novelty detection can identify the most 
interesting designs without extensive reasoning by comparing the relative 
performance of different designs under similar conditions. The same novelty detector 
was used in the next experiment to implement models of interest and curiosity for an 
autonomous design agent. 

6.1.4 Experiment 2: Curious Problem Finding and Problem Solving 
In this experiment a curious design agent was given two conceptual spaces to explore: 
a problem space and a solution space. The aim of this experiment is to show that a 
curious design agent can maintain interest in a design task by switching between 
problem-solving and problem-finding. 

6.1.4.1 Method 
The solution space was defined by two variables: the number of doors making up the 
doorway and the combined width of doors. The problem space was defined by a 
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single variable: the total number of pedestrians in the two crowds trying to get 
through the doorway. All other variables of the simulation remained constant. 

6.1.4.2 Results 
Figure 6.5 shows the novelty detected over the course of a design session. The design 
agent was initially given a narrow doorway as a solution to the problem of moving a 
single pedestrian. The novelty of exploring this design soon decreases as the agent 
learns to accurately predict the doorway’s performance, the agent’s interest level 
quickly falls below its boredom threshold and it begins to explore the problem and 
solution spaces for more interesting situations. 

Figure 6.5 shows the design agent switching between searching the problem and 
solution spaces as interest in a particular problem or solution wanes. The chart shows 
the “tailing-off” of novelty values as the characteristics of situations are learned. It 
also shows how the detection of novelty extends the period that an agent spends 
searching a particular space, especially the exploration of the problem space for trials 
17–37 and 67–82. 
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Figure 6.5: The results of using a curious design agent to explore the problem and 
solution spaces for doorway design. The chart shows the novelty detected for each 
simulation trial. The light shaded regions indicate that the design agent is problem 
finding and dark shaded regions indicate that the design agent is problem solving. 

The highest peaks in detected novelty (~0.9) in the first half of the experiment (up 
to trial 68) all correspond to simulations using double doorway designs as these have 
significantly different characteristics to single doorway designs initially explored. 

The high peaks in the second half of the chart correspond to simulations using 
wide doorway designs. This change in fixation occurs when the interest in double 
doorway designs subsides. In the second half of the design session the design agent is 
discovering an array of interesting situations where a wide door does not perform in 
the same way as a double door. At lower numbers of pedestrians the wide doorway 
does better than the double doorway, while at higher numbers of pedestrians it 
performs worse. Either way, the design agent finds situations involving wide doorway 
designs novel and maintains a higher level of interest in exploring this area of the 
design space than would otherwise be expected. 

The change in fixation of the design agent from double to wide doorways 
illustrates a difference in exploration between a more conventional optimisation 
approach and one based on curiosity. The curious design agent did not explore the 
situations using wide door designs because they performed better than the double door 
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designs. Instead, it explored the space of wide door designs because they did not 
perform as expected from previous experiences of the similar-yet-different double 
door designs. Exploring similar situations in this way allows a curious design agent to 
construct a better representation of the design space. 

6.1.5 Discussion 
Experiment 1 showed that novelty detection could be used to identify interesting 
situations where unexpected emergent properties play an important role in the 
evaluation of designs. Experiment 2 showed that a curious design agent can 
autonomously explore problem and solution spaces to identify interesting design 
situations from which to learn more about the design task. 

6.1.5.1 Future Work 
Possible extensions to this work include its application to more complex design tasks, 
possibly requiring a transition in design methods from parametric configuration to 
design tool-use. For example, a natural progression would be to apply curious design 
agents to the design of large public spaces like train stations where frequent 
interactions between pedestrians and the resulting emergent group behaviours have a 
significant impact on the performance of the space. 

A different direction that this work could take would be the inclusion of “curious 
social forces” in the models of pedestrians. The motivation to explore new spaces for 
new experiences can be modelled in mobile agents as demonstrated by the curious 
agent exploring a 2D space demonstrated earlier, and as the work of Marsland et al. 
(2000a; 2000b; 2000c; 2001), Schmidhuber (1991a; 1991b; 1991c; 1997) and others 
have shown in other agent-based applications.  

Modelling curiosity in crowds of pedestrian agents would permit the simulation of 
design problems where maintaining an interest in a space is as important as efficient 
movement or comfort. To illustrate this idea, consider the problem of designing an art 
gallery exhibition. The problem is one of maintaining interest for visitors to the 
gallery by exposing them to a sequence of similar-yet-different artworks. One might 
simulate this problem by substituting coloured patches for artworks and making the 
pedestrians interested in finding new colours. 

Figure 6.6 illustrates the kinds of problems that might be modelled using curious 
pedestrians. The kinds of problems that the curious design agent would be concerned 
with exploring would include determining how best to keep an exhibition interesting 
throughout a pedestrian’s journey around a gallery. To keep the experience interesting 
a gallery’s design would have to take into account the preference of curious 
pedestrians to encounter similar-yet-different experiences. 

The problems illustrated in Figure 6.6 are the formation of a crowd blocking 
passage at the gallery entrance and the streaming of pedestrians past paintings at the 
end of the gallery tour. The positioning of works around the walls causes both 
problems by producing “curious social forces” that steer pedestrians away from the 
desired direction of travel. The curious social forces are indicated on the gallery plan 
by light grey arrows. In the first case the painting at the end of the hallway is so 
different from those in the first room that the pedestrians prefer to remain with the 
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familiar paintings causing a blockage. In the second case, the paintings in the last 
room are not visible from the previous room and so when they are encountered and 
they are discovered to be different from what was expected they gain little attention as 
the pedestrians stream by. 
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Figure 6.6: Crowding behaviour at start of gallery, streamed behaviour at end of gallery. 

The importance of design problems such as the one presented above is that they 
show the potential for curious agents to play a role as consumers as well as designers. 
As consumers, curious agents have complex behaviour that changes over time with 
exposure. The problem of designing an interesting gallery is further compounded if 
one assumes that agents will visit the same gallery more than once. How does a 
curious design agent maintain the interest of visitors that have already experienced 
many of the works in previous visits? 

6.1.6 Conclusions 
The doorway design application shows one way that a design system can be 
constructed where design agents produce works that are evaluated by other agents, in 
this case pedestrian agents. More complex design problems could provide more 
opportunities to investigate the emergence of unexpected behaviour affecting 
evaluative judgements of pedestrians, however, a more interesting prospect is the 
incorporation of a model of curiosity in consumer agents, providing the opportunity to 
study evaluations that change with exposure to previous designs. 

6.2 THE DIGITAL CLOCKWORK MUSE 
The final application of curious design agents has been the most interesting. It 
demonstrates how the ability of curious design agents to assess the creativity of their 
products facilitates the production of complex models of social creativity. 

6.2.1 Motivation 
Gabora developed a memetic theory of social creativity that stresses the important 
relationship between innovation and imitation in the spread of creative ideas and 
cultural evolution (Gabora, 1996; 1997; 2000). Gabora has also developed a 
computational model, “Memes and Variations”, that demonstrates this theory for a 
fixed fitness function (Gabora, 1995). In “Memes and Variations” agents exchange 
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information about ritual dance moves by imitating the movements of nearby agents. 
The success of any innovations made by the agents as a result of mutations are 
evaluated using an objective fitness function that calculates the number of correct 
limb positions over time. By using a combination of simulation, imitation and 
innovation Gabora showed how successful innovations quickly spread through a 
population of agents. 

Colton et al. (2000) investigated a quite different type of culturally situated 
creativity in a study of agent based co-operative theory formation in pure 
mathematics. Colton et al. compared the performance of groups of collaborating 
agents with single agents. They discovered that small groups of collaborating agents 
with different search strategies outperformed single agents under a number of criteria. 
As part of their investigation, Colton et al. developed a definition of creativity 
appropriate to theory formation, based on the novelty of a theory’s categorisation of a 
set of numbers. They used this measure of creativity to assess the relative 
performance of collaborating groups and found that larger groups with more diverse 
search strategies were more creative. 

The computational model of creativity presented in this section uses a different 
approach to modelling creativity. Instead of using a fixed, objective definition of 
creativity it supports the emergence of socially defined notions of what and who are 
creative.  

6.2.2 Implementation 
The models of social creativity presented here have been developed using multiple 
agents of the type described in Section 5.4 with the addition of some communication 
skills. Each agent uses an interactive evolutionary algorithm to produce “genetic 
artworks”. Agents can send and receive two types of messages; messages containing 
artworks encoded as Lisp expressions, and messages containing evaluations of 
previously sent artworks. 

More interesting than the types of messages sent between agents are how the agent 
decides to send an artwork to other agents, and why an agent that receives an artwork 
would decide to pay for it. In both cases the decisions to take these actions are 
determined based on the interestingness of the artworks involved. 

6.2.2.1 Communication Policies 
During the evolutionary process an agent will determine the most interesting artwork 
in each generation and use that artwork as the parent of the next generation. If the 
interestingness of an artwork is so great as to breach a high threshold value then the 
artwork will be sent to other agents for evaluation. Interest ranges from 0.0 to 1.0, the 
interest threshold for communication used in these experiments has been fixed at 0.7 
throughout. 

Upon receiving an artwork an agent evaluates it according to its own experiences; 
experiences that will almost certainly differ from those of the originator. An artwork 
that was interesting for its creator may be boring to a second agent because it is too 
familiar or it may be uninteresting to a third agent because it is not familiar enough. 
Alternatively, an agent may find a received artwork more interesting than its own 
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works, in which case it can use the received artwork as the starting point for a new 
evolutionary search, but before using an artwork received from elsewhere an agent 
must pay the creator of the interesting artwork some credit. The credit paid to use an 
artwork is proportional to the interest the receiving agent has in it. The amount of 
credit accumulated throughout a lifetime is used to assess how creative a particular 
individual is thought to be by other agents. 

The receiving agent also has to add a record of the interesting artwork and the 
creating artist to a store of creative examples for posterity. Future generations of 
genetic artists can thus begin their search with artworks that were once considered 
creative. The record of interesting artworks can be used as a means to trace the 
development of artistic styles considered creative over time. 

6.2.3 Experiment1: The Law of Novelty 
The experiments described here extend the previous investigation of Martindale’s 
hypothesis that the search for novelty is one of the primary motivators of creativity. It 
extends the study presented in Section 5.4 to consider the social consequences of 
applying the “Law of Novelty” (Martindale, 1990). 

This experiment investigates the effects of applying The Law of Novelty on 
agents with different hedonic functions. The aim of this experiment was to show that 
agents are isolated if they fail to innovate in ways that other agents can appreciate. 

In his thought experiment, Martindale only considered the case where an 
individual is ignored for repetition. The experiment presented here generalises the 
Law of Novelty by considering very similar works to be breaches of the law as much 
as exact replicas. Curious design agents generalise from their experiences, as a result 
they will ignore agents that not only repeat previous works, but also those that 
produce works that are very similar to previously experienced works. 

This experiment also considers another extension to Martindale’s law; it 
investigates the acceptance of agents that produce very novel works. Martindale was 
concerned with the promotion of novelty through social recognition, but the studies of 
preference judgements suggest that novelty is only appreciated in moderation as 
predicted by Berlyne’s model of hedonic value. This experiment investigates the 
behaviour of a social group to an individual that produces radically novel works. 

6.2.3.1 Method 
The behaviour of agents with different preferences for novelty can be studied in a 
single simulation run. A group of agents was created for this experiment; most of the 
agents, numbered 0-9, shared the same hedonic function, i.e. the same preference for 
novelty (N=11). Two additional agents have different novelty preferences; one, 
“agent-10”, has a preference for low amounts of novelty (N=3) and the other, “agent-
11”, has a preference for high amounts of novelty (N=19). The three hedonic 
functions used are illustrated in Figure 6.7. 
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Figure 6.7: The hedonic functions for the agents used in the Law of Novelty experiment. 

6.2.3.2 Results 
The results of the simulation are presented in Table 6.2. The results show the agents 
with the same preference for novelty to be somewhat creative according to their peers, 
with an average attributed creativity of 5.57. However, neither agent 10 nor agent 11 
received any credit for their artworks. Consequently none of the artworks produced by 
these agents were saved in the store of example artworks for future generations. When 
these agents expired nothing remained in the system of their efforts. 

 
Agent 

ID 
Preferred 
Novelty 

Attributed 
Creativity 

0 N=11 5.43 
1 N=11 4.49 
2 N=11 4.50 
3 N=11 3.60 
4 N=11 4.48 
5 N=11 1.82 
6 N=11 6.32 
7 N=11 8.93 
8 N=11 10.72 
9 N=11 5.39 

10 N=3 0.0 
11 N=19 0.0 

Table 6.2: The attributed creativity for a group of agents with different preferences for 
novelty. 

Figure 6.8 shows how the network of communication links that has developed 
between agents that communicate artworks and evaluations on a regular basis 
excludes the two agents with different hedonic functions. In the screenshots of the 
running simulation the squares represent agents; the images in each square shows the 
currently selected genetic artwork for that agent, the number above each agent shows 
its attributed creativity, and the lines between agents indicate the number of rewarded 
communications between pairs of agents. 
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Figure 6.8: Screenshot of a running simulation of the Law of Novelty, shows graphically 
how agents that do not innovate appropriately are isolated. The agent named "genart-0-
artist-10" prefers low amounts of novelty; "genart-0-artist-11" searches for high degrees 

of novelty. 

To better understand the effects of an agent having a different hedonic function to 
the majority of agents in a population a series of similar simulation runs were 
performed where the difference between the majority preference for novelty and the 
two renegade agents is varied from 8, as in the current experiments giving N=3 and 
N=19, to 1, by giving the two agents hedonic functions favouring N=10 and N=12. 
The attributed creativity to the agents favouring high and low levels of novelty are 
shown in Figure 6.9. The figures plotted against the hedonic are the creativity 
attributed to an agent relative to the average creativity of the majority of agents that 
share the same hedonic function. 
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Figure 6.9: Relative creativity for a range of conservative and radical agents over a 

range of hedonic values that differ from the common hedonic preference (N=11) by the 
amount stated, i.e. conservative hedonic preference = 11 – hedonic difference, radical 

hedonic preference = 11 + hedonic difference. 

Figure 6.9 shows that attributed creativity varies non-linearly with the difference 
between an agent’s preference for novelty and the majority. It also shows a slight 
preference for the works of the conservative agent over the radical one.  

6.2.3.3 Discussion 
The results of this experiment appear to confirm Martindale’s hypothesis generalises 
to the case where works that are very similar to ones previously experienced are 
ignored just as much as those that are exact replicas. To avoid being ignored an agent 
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must produce some significant novelty that sets a work apart from previous examples. 
The results also show that while an agent must produce novelty to be considered 
creative, it must do so at a pace that matches its audience. There is no advantage in 
producing many highly novel works if the audience cannot appreciate them. In the 
first run of the experiment, the agent with a preference for high levels of novelty and 
hence rapid innovation was just as unsuccessful in gaining recognition as the agent 
with a low novelty threshold that did not innovate. Indeed, it appears from the series 
of experiments shown in Figure 6.9 that erring on the side of caution may be more 
beneficial that innovating too quickly but more work needs to be done to confirm this 
experimentally.  

6.2.4 Experiment 2: Novelty Cliques 
The previous experiment showed that agents become isolated when they innovate too 
slowly or too quickly because of low or high preferences for novelty. This experiment 
investigates the social behaviour of groups of agents with different hedonic functions. 
Some possible behaviours include: the production of comprised works that partly 
appeal to agents with different preferences for novelty, the production of works in 
bursts of high novelty followed by periods of low amounts of novelty, the formation 
of isolated groups that produce works for the other members of the group. 

6.2.4.1 Method 
A group of 10 agents were created for each run, half of them had a hedonic function 
that favoured novelty N=6 and the other five agents favoured novelty values close to 
N=15. The population of agents were allowed to evolve and communicate artworks 
for 50 time steps. 

6.2.4.2 Results 
Figure 6.10 shows the payments of creativity credit between the agents in recognition 
of interesting artworks sent by the agents. Two areas of frequent communication can 
be seen in the matrix of payment messages shown in Figure 6.10(a). The agents with 
the same hedonic function frequently send credit for interesting artworks amongst 
themselves but rarely send them to agents with a different hedonic function. There are 
a large number of credit messages between agents 0-4 and agents 5-9, but only one 
payment between the two groups – agent 4 credits agent 5 for a single interesting 
artwork. 

The result of putting collections of agents with different hedonic functions in 
single simulation appears to be the formation of cliques: groups of agents that 
communicate credit frequently amongst themselves but rarely acknowledge the 
creativity of agents outside the clique. As a consequence of the lack of 
communication between the groups the style of artworks produced by the two cliques 
also remains distinct. 

Figure 6.10(b) is a screenshot of the running simulation that clearly shows the two 
cliques formed. The distances between agents are shortened when they communicate 
frequently. The different styles of the two groups can also be seen, with agents 0-4 
producing smooth radial images with low a fractal dimension (~1.4) and agents 5-9 
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producing fractured images with clearly defined edges and a higher fractal dimension 
(~1.7). 
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Figure 6.10: The communication of credit between two groups of agents having 
preference for novelty values N=6 and N=15. (a) A matrix showing the total number of 

messages carrying credit. (b) A screenshot of the running simulation. 

A similar pair of groups was simulated with different hedonic functions that 
favoured N=9 and N=12. The communications of credit between agents is illustrated 
in Figure 6.11. The results show that while the cliques still form and communication 
of credit is still concentrated within these cliques, there are more inter-clique 
communications than before. 
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Figure 6.11: The communication of credit between two groups of agents having 

preference for novelty values N=9 and N=12. (a) A matrix showing the total number of 
messages carrying credit. (b) A screenshot of the running simulation. 

An interesting observation about the nature of the communication between cliques 
can be made from looking at Figure 6.11(a) which shows that most of the payments 
between cliques came from the second group with preference for N=12; only one 
inter-clique payment was made by a member of the more conservative group that 
preferred N=9, i.e. between agent-1 and agent-5. This observation is consistent with 
the earlier observation that it is better to be too conservative than too radical when 
trying to gain the recognition of others with different preferences for novelty. 

There are at least two possible explanations for this observation. The first is that 
agents with a higher preference for novelty can find the images produced by more 
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conservative agents novel in comparison to the work of their fellow clique members. 
The second is that agents that prefer lower levels of novelty cannot appreciate the 
work of more radical agents and hence never attribute any credit to them. It is unclear 
from these results which explanation is more likely as either would explain the data. 
Further work may find that both behaviours play a role in the formation of cliques and 
the unequal communication of credit between them. 

6.2.4.3 Discussion 
The results of this experiment show that when a population of agents contains 
subgroups with different hedonic functions, the agents in those subgroups form 
cliques. The agents within a clique communicate credit frequently amongst 
themselves but rarely to outsiders. The stability of these cliques depends upon how 
similar the individuals in different subgroups are and how often the agents in one 
subgroup are exposed to the artworks of another subgroup. Further research is needed 
to determine whether other factors that can affect judgements of interestingness can 
similarly affect the social structure. 

6.2.5 Future Work 
The artificial creativity framework implemented here provides several opportunities 
for developing future models of social creativity. Three possible directions for future 
work are: (1) the simulation of larger creative societies, (2) the development of new 
types of agents, and (3) the development of more complex social interactions. 

6.2.5.1 Large Creative Societies 
The ability to simulate larger creative societies will permit the study of the spread of 
innovations (Gabora, 1997; Goldenberg et al., 2000) and styles. It may also facilitate 
the emergence of new fields as cliques attain a critical size. Spatial and topological 
relationships will become more important issues in large population models. 

6.2.5.2 New Types of Agents 
There are several other important players in creativity societies besides the producers 
of innovations including, e.g. consumers, distributors, critics, etc. Each has their own 
role to play in artificially creative societies; consumers evaluate products, distributors 
distribute products widely, and critics distribute their evaluations widely. These roles 
are illustrated in Figure 6.12.  

Convincing other people that you’ve had a creative idea is often harder than 
having the idea in the first place (Csikszentmihalyi, 1999). In non-homogenous 
societies of agents, the selection of which agents to communicate with becomes 
important for agents seeking recognition from their peers. 

6.2.5.3 Strategic Knowledge 
Simulations of technological innovation in industry show that the consideration of the 
costs of innovation in decision-making can lead to complex behaviour (Haag and 
Liedl, 2001). Simulating similar costs in the design process may provide a better 
understanding of the economics of creative design in creative societies and the 
strategies needed to manage creativity with limited resources. 
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Figure 6.12: Three different types of individuals and their roles in the communication of 

designs and evaluations in creative design societies. 

6.2.5.4 Dynamic and Distributed Domains 
Providing a more dynamic model of the domain will complement the already dynamic 
model of creative societies presented in The Digital Clockwork Muse. Future 
implementations on The Digital Clockwork should attempt to capture the emergent 
nature of the domain observed in human cultures. Currently, the domain is 
implemented as a very simple database of possible starting points for agents to use to 
search for interesting designs: the domain contains all artefacts added to it during the 
course of a simulation run and the domain interaction policies for individuals are 
limited to simple storage and retrieval commands; there is no support for the revision 
of a domain’s content over time. The static nature of the domains implemented so far 
has prevented an investigation into the honorific nature of Boden’s H-creativity in 
artificial creativity systems. Expanding the range of domain interactions to include the 
revision of the domains content will allow such experiments to be conducted. 

Beyond the expansion of the role of the domain as a database, there is also the 
possibility for distributing some, or all, of the domain’s functions amongst the 
members of its associated field. The simultaneous existence of multiple views of the 
current state of cultural knowledge among the individuals in a field will allow the 
effects of incomplete and erroneous domain knowledge to be studied, providing a far 
more complex cultural environment for the individuals to explore and learn about as 
they traverse between culturally distinct niches. 

6.2.6 Conclusions 
The Digital Clockwork Muse project has demonstrated the utility of the artificial 
creativity approach studying social creativity in multi-agent simulations. The 
experiments have shown the emergence of definitions about whom and what are 
creative as a consequence of the search for novelty and the communication of works 
between individuals. The first experiment investigated the role that an agent’s hedonic 
function plays in the recognition of its socially defined creativity. The second 
experiment showed that groups form when agents have different hedonic functions 
that favour different types of artworks. 

In the above simulations the consensus of what is creative, i.e. those artworks that 
are stored as creative examples, has been demonstrated to be a function of both the 
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individual’s drive for novelty and the collective experience of the group of agents. 
The definition of a creative artwork is thus a social construct of more than one agent. 
The assignment of creativity to an agent is also an honorary term given to agents that 
consistently produced artworks appreciated by other agents. 

6.3 CONCLUSIONS 
This chapter has present experiments with curious design agents that have explored 
issues surrounding their use in closed-world simulations of creativity. These issues 
have included: 

1) Curious design agents have been used to develop closed-world 
simulations of socially situated creativity involving designer and 
consumer agents with different views of the simulated world. 

2) The behaviour of curious design agent able to switch between 
problem-finding and problem-solving has been examined. 

3) It has been shown that it is possible to implement artificial creativity 
models using a heterogeneous population of curious design agents. 

4) Emergent properties of an artificial creativity model, The Digital 
Clockwork Muse, have been investigated showing the emergence of 
notions of who and what are creative and the formation of emergent 
social structures. 

This chapter has presented two approaches to developing closed-world 
simulations of socially situated creative behaviour. In the first application a curious 
design agent was designed for the satisfaction of the needs of pedestrian agents to 
pass efficiently through a space and maintain a level of comfort while doing so. The 
integration of more complex needs could make this type of system a useful tool for 
the study of designer responses to consumer demands that change over time. In 
particular, the integration of curiosity into the models of consumers would provide an 
opportunity to study the demand for creative designing as well as its satisfaction. 

The second application presented an abstract model of social creativity within a 
community of designers (or artists). The details of the design artefacts are of 
secondary importance in the analysis of the social behaviour of designers although 
they play an important role in the design process. More important contributions to our 
understanding of social creativity can be gained from studying the emergent social 
behaviour observed in groups of agents, particularly the social structures formed by 
networks of communication between agents. The possibility for developing more 
complex social simulations is discussed in the next chapter. 
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Chapter 7  

Future Agents of Curiosity 

The applications presented in this thesis have demonstrated curious design agents 
applied in a variety of ways to a range of design domains. Each application presents 
unique possibilities for future work; some of these possibilities have been discussed in 
the application-specific discussion sections. 

This chapter presents a discussion of the limitations of current curious design 
agents and some directions for future work. It also discusses how the model of 
curiosity developed in this thesis could assist an agent pass a Turing Test of creativity. 

7.1 CURIOUS DESIGN AGENTS 
This section seeks to address some reasonable criticisms of the curious design agents 
presented in this thesis. The intention is not to refute these criticisms but to use them 
as pointers to future work. Among the most important criticisms of the curious design 
agents presented are: 

• The curious design agents did not create anything new. The curious 
design agents only ever explored micro-domains; their works have no 
value in human society and so the agents cannot be considered 
creative. If the test of a machine’s creativity is that it produces works 
judged to be creative by human society then no curious design agent 
has succeeded in being the least bit creative. 

• Will the model of curiosity scale up to real-world problems? AI 
models often show great promise in micro-domains that fails to 
materialise when applied to more complex problems. If the model of 
curiosity cannot scale to design problems of reasonable complexity 
this would suggest a problem with the approach. 
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• The curious design agents did not have design goals. Designers work 
to satisfy the needs of clients by setting design goals to achieve some 
level of usefulness. The curious design agents developed so far have 
no explicit design goals; this diminishes their claim to model 
designing or any other form of creativity requiring significant utility in 
the final product. 

• Curiosity is more than just searching for novelty. The curious design 
agents model the curiosity as diversive exploration when “bored” to 
increase stimulation but Berlyne defines curiosity to also include 
specific exploration where an object is focussed upon to reduce 
stimulation. 

7.1.1 The Problem with Micro-Domains 
The use of micro-domains has a long history in Artificial Intelligence. One problem 
with the use of micro-domains in this research is that they preclude the possibility of 
curious design agents discovering anything of particular value to human society, but 
for the purposes of demonstrating the validity of the approach this was not considered 
a serious problem. Instead, the aim has been to show that a model of curiosity offers 
advantages in the development of autonomous design agents. 

Knowledge-based design systems require large amounts of information to proceed 
and suffer from an inability to generalise that restricts them to narrow domains of 
expertise. In contrast, curious design agents require very little knowledge about a 
domain before they can explore its design space. Tool-using curious design agents 
only require the necessary abilities to operate the design tool and perceive the results. 
In some cases this may mean that a curious design agent could be assigned to new 
domains without any changes. 

Figure 7.1 attempts to illustrate the difference in the level of competence and 
robustness between knowledge-based design systems and curious design agents. The 
width of a strip indicates the amount of autonomy that each type of design system has 
as an indication of the amount of competence that a system can gain through 
experience. Knowledge-based design systems have a high degree of competence in a 
narrowly defined domain, while the curious design agents developed so far have a 
much lower level of competence but can potentially handle a wider range of situations 
because they use a general-purpose heuristic to guide design space exploration. 
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Figure 7.1: Comparing the competence and robustness of curious design agents with 

knowledge-based design systems and human designers (after Peters, 2000). 
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7.1.2 Scaling Up Curiosity 
A more serious problem with the use of micro-domains is the quite reasonable 
concern that the model of curiosity might not scale up to allow curious design agents 
to tackle more complex design problems. Fortunately, the model of curiosity 
presented in Chapter 3 is based on the comparison of conceptual state variables and 
not on the comparison of design state variables. This means that as long as the agent 
has the necessary functions to construct a conceptual state describing its current 
design situation then the current model of curiosity will scale with the design 
problem. 

The adaptation of conceptors and long-term memory in curious design agents is of 
more concern but there are plenty of options available to curious agent developers. 
Several different neural network architectures have been proposed as possible novelty 
detectors based on different technologies, e.g. feed-forward networks (Kohonen, 
1993), combinations of multiple feed-forward networks (Schmidhuber, 1991a) and 
adaptations of SOMs (Marsland et al., 2000). 

Marsland et al. are currently developing the Grow When Required (GWR) 
network architecture, a form of growing self-organising network, for the purposes of 
supporting novelty detection in a curious agent (Marsland, 2001). Growing self-
organising networks should prove useful for implementing models of curiosity 
because they combine the strengths of SOMs and ART networks (Fritzke, 1996). 
Recurrent neural networks, e.g. Pollack’s RAAM or Elman’s SRN (Pollack, 1990; 
Elman, 1990), should also be useful for encoding temporal sequences in the 
conceptual state of an agent for the detection of surprise. 

Curious design agents are not limited to using novelty detectors based on neural 
networks. For example, the curious experience selection mechanisms of Scott and 
Markovitch (1989a; 1989b) used a novelty detection mechanism based on Shannon’s 
measure of entropy. Baker et al. (1999) developed a scheme for novelty detection in 
text documents based on a hierarchical classification scheme that they used to track 
breaking news stories. 

Gomes et al. (1999) presented a function for novelty evaluation in design for use 
with case-based reasoning (CBR) design systems. Comparisons of the novelty 
evaluation with the judgements of a design expert showed that it was reasonably 
accurate. Macedo and Cardosa (2001a, 2001b) took the next logical step and 
developed a model of surprise and curiosity within a CBR design system as both a 
search heuristic and a model of emotion. CBR is a popular approach to modelling 
design reasoning and Macedo and Cardosa’s approach to modelling curiosity shows 
great promise as a scalable agent framework. 

7.1.2.1 Adaptive Novelty Detection 
Although the current model of curiosity should scale it is not particularly 
sophisticated. Curious agents with simple models of curiosity can become trapped in 
non-deterministic areas of an environment because the non-deterministic nature of the 
environment generates a continuous stream of novel experiences that make it 
perpetually interesting. Schmidhuber (1991a) demonstrated a simple solution to the 
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problem by using two predictors to detector novelty rather than one. Schmidhuber’s 
model of adaptive curiosity uses one predictor to detect novelty in the environment 
and a second predictor to determine the reliability of the first predictor. If the first 
predictor is unreliable within a certain part of the environment then the novelty 
detected by it will be high, however, the second predictor will be able to model this 
unreliability and so discount the novelty detected by the first predictor. 

Peter’s (2000) hierarchy of attention systems based on novelty detectors models a 
similar approach to adaptively attending to novelty in the environment. Using an 
adaptive novelty detector should allow curious design agents to explore complex 
design spaces more robustly and avoid fixating upon unpredictable aspects of the 
design problem.  

7.1.3 Creative Designing Requires Goals 
None of the curious design agents presented in this thesis model an interest in 
anything other than novelty. Obviously, this does not model the interest that people 
show in a situation when they have a set goal as in problem-solving. Models of 
interest in future agents must include other important features of the design problem. 
Design agents must model an interest in satisfying the needs of consumers. For 
example, future doorway design agents should not only explore the interesting self-
organising behaviour of pedestrian agents but also have an interest in maximising 
efficiency and minimising discomfort. 

The most interesting aspect of expanding the scope of interest in curious design 
agents is determining how to assign importance to the requirements of the design 
product to be useful vs. the motivation to find a novel solution. In other words, how to 
dynamically determine the importance of importance (Waltz, 1998). 

The doorway design application suggests one approach to assigning importance. 
In that application the level of interest was used to determine when to switch between 
exploring solution and problem spaces based on the assumption that when an agent’s 
interest level falls below a boredom threshold there is little more for it to learn while 
exploring the current space. Using the same assumption, a curious design agent might 
control the transition between conceptual and detailed designing by adjusting the 
relative importance of novelty vs. utility judgements in determining interest. The 
advantage of this approach is that it provides a smooth transition from conceptual to 
detailed design and allows the retreat back into conceptual design if no useful designs 
can be found within a period of detailed designing. 

7.1.4 Curious Exploration 
The curious design agents presented here have modelled diversive exploration for the 
most part, i.e. the exploration of a space in search of stimulation. These agents did not 
need to model specific exploration, i.e. the exploration of a space to reduce 
stimulation, because they had learning systems able to learn quickly within the simple 
domains presented. Agents exploring more complex design spaces will need to be 
able to conduct specific exploration to ensure that they have properly learned about an 
object of curiosity before continuing to explore. 
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7.2 FUTURE AGENTS OF CURIOSITY 
Agents have been applied to situations where users face information overload, in 
particular, in the filtering of information streams such as Internet newsgroups (Maes, 
1994). Technologies similar to curious design agents may play an important role in 
future CAD systems by reducing the amount of information presented to an architect 
throughout the design process. 

7.2.1.1 Reducing Information Overload 
Architects increasingly face the problem of “information overload” as they try to 
explore complex design spaces for innovative solutions. Applications of novelty 
detection in data-mining, text-retrieval and information filtering (Baker et al., 1999; 
Maes, 1994) suggest that curious design assistants could be used to find interesting 
information in the preparatory stages of design when a designer must gather source 
material to inform future design decisions. 

7.2.1.2 Generating Interesting Solutions 
Although generative design systems can assist designers by producing many possible 
design solutions, these systems often suffer the same problem as the models of 
creativity discussed in Chapter 2; they cannot distinguish potentially interesting 
designs from those that are not because they have no model of how unexpected a 
particular design is. 

Curious design assistants present two possible solutions to this problem. The first 
solution is to filter the designs presented by a generative design system for 
interestingness before presenting them to a user. The second solution is to have a 
curious design agent autonomously explore a design space using a generative design 
system and then prepare a report on potentially interesting solutions at the end of the 
exploration. In either case, curious design assistants will have to be shown to model a 
user’s preferences. 

7.2.1.3 Modelling User Preferences 
Baluja et al. (1994) attempted to model user preferences using neural networks trained 
on a user’s evaluations of genetic artworks. The user evolved genetic artworks using 
an interactive evolutionary system, similar to the ones used by curious design agents 
in Chapters 5 & 6. The aim of the study was to train neural networks to evaluate 
artworks similarly to the user, based on features within each genetic artwork. 

The researchers attempted several different types of networks ranging in 
complexity but found that for the most part the networks could only predict which 
images were likely to be uninteresting with any accuracy. It was concluded that the 
disappointing performance of the networks was due to a lack of sophistication in the 
image processing and learning systems, however, as Baluja et al. observed: “users 
often will choose an image because it is different than the other images on the 
screen.” This simple observation suggests that a system based on novelty detection 
and curious selection might better predict the preferences of a user. 
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7.2.1.4 A Curious Design Assistant 
As a proof-of-concept, a system has been developed that allows a curious design 
agent and a person to use the same tool to evolve 2D structures9. The structures 
evolved by the agent are called “horns”, name after the similar 3D structures evolved 
by Latham (Todd and Latham, 1992). Horns are constructed by applying a sequence 
of morphological processes to simple graphical elements to produce complex 
structures10. The curious agent uses an ART-based novelty detector to determine the 
novelty and a linear hedonic function to favour the most novel horn in each generation 
with respect to its experiences of other horns within an evolutionary run. 

A preliminary study compared an agent’s interestingness rankings with a user’s 
selections. The results in Figure 7.2 shows that the curious design agent could predict 
the most interesting structure in a population (i.e. assign it a rank of 1) with up to 50% 
accuracy; taking the top 3 rankings as likely candidates for selection improves this 
score to between 60% and 72% accuracy. Unlike Baluja et al.’s study, the agent in 
this system is not designed to learn a user’s preference, rather it is a model of user 
preference based on the empirical findings. The results of the initial study suggest that 
up to 72% of selections can be explained as a preference for novelty. 
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Figure 7.2: Results of pilot study to model a user's preferences using a curious design 

agent. Chart shows the number of selections made by a user against the preference 
judgements of a curious design agent ranked from 1–9, where a rank of 1 is given to the 

most interesting structures. Three trials of 50 selections in each trial are shown. 

The system has the ability to function as an “auto-pilot”, guiding the evolution of 
new horns along the most interesting paths that present themselves. Figure 7.3 
illustrates the selections of the curious design agent for a short run of 30 generations. 
The figure shows the horn selected at each generation and below each selection the 
population of nine horns that it had to choose from. 

                                                 
9 This system is available on the accompanying CD-ROM: see Appendix B for details. 
10 The implementation of horn evolution used in this work is based on code developed by Marius Watz, 
that is freely available on the Internet at http://www.notam.uio.no/~mariusw/form/java/horn.html. 
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7.2.1.5 Finding Interesting Problems 
The doorway design example showed that a curious design agent could find 
interesting design problems using the same processes that it used to find interesting 
design solutions. In the same way that curious design assistants can be used to 
generate interesting design solutions they could also be used to generate interesting 
design problems thereby assisting the designer identify potential problems early in the 
design process. Also, because curious design agents are interested in all atypical 
behaviour, curious problem-finding assistants could also be used to identify 
unexpected opportunities in design situations, as in the example of the spontaneous 
self-organisation of crowd behaviour through a double doorway presented earlier. 

7.3 RECONSIDERING ARTIFICIAL CREATIVITY 
This thesis began by considering the question of age-old question of whether 
computers could ever be creative. The need for a computer to recognise the novelty of 
its works was identified as a necessary requirement if computers are ever to be 
considered creative; for it is the ability to recognise novelty that is lacking in existing 
models of creativity that can produce many works but cannot differentiate between 
mundane and creative solutions. The intervening chapters have shown how the ability 
to recognise novelty and act upon that recognition to promote the further production 
of novel works can be added to existing agent models and how it can implemented 
using existing technologies. 

The curious design agents presented earlier represent a new vehicle for the 
computational study of creativity. The applications presented in Chapters 5 & 6 have 
demonstrated the possibility of more completely modelling creative behaviour by 
using curious design agents to model both personal and social creativity. The aim of 
this section is to develop a better understanding of the implications of the behaviour 
of curious design agents for the computational creativity debate. 

This section re-examines two commonly proposed tests for artificial creativity and 
then re-visits Turing’s famous test for intelligent behaviour with the intention of 
identifying the core question that creative systems should be able to answer if they are 
to prove themselves creative. 

7.3.1 Testing Machine Creativity 
How can artificial creativity be tested? There are commonly considered to be two 
aspects of a system that can be tested for creativity; firstly, the products of a system 
can be tested for novelty and usefulness, and secondly, the processes of a system can 
be tested for similarity to recognised creative processes. 

The problem with testing the products of a computational system is that it is too 
readily passed by systems that do not claim to model creativity. The generation of 
novel and useful works does not require that the generative system model creativity if 
a human observer can do the evaluation of novelty. This has been the case with many 
of the systems that have produced innovations (see Section 2.2 for some examples). 

As noted by Boden (1990), how a machine came to produce a creative work 
appears to be an important criterion for many people. For example, Cohen refuses to 
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attribute his program AARON with creativity, even though it has produced many 
works in its unique style that have been displayed in galleries alongside the work of 
human artists. Cohen does not attribute AARON with creativity because he does not 
consider AARON to be an implementation of suitably general creative processes 
(Cohen, 1999). The need for candidate creativity systems to implement processes 
regarded to be at the core of human creativity, e.g. analogy-making, seems to be 
rooted in the well-founded suspicion that a seemingly creative system could be 
constructed by simply combining a well-chosen “bag of tricks” that give the illusion 
of creative behaviour within a narrow domain; however, it should be noted that the 
same people who may discount computational systems this way are generally 
prepared to accept, without access to internal mental processes, the creativity of other 
people. 

One problem with the relying on a test of whether or not a system is using a 
creative process is that using a creative process does not guarantee that a system will 
generate creative products. In addition, it is unclear what constitutes a creative 
process; although some rational thought processes have been identified as being 
useful in generating creative ideas, e.g. analogy-making, there are still many 
researchers that believe that creative thinking is conducted mainly as a series of sub-
conscious processes, about which little is known. 

Bringsjord (2001) has recently proposed a test for the creativity of computer 
systems that requires that a person with complete knowledge of the internal workings 
of a computer system be unable to explain the production of a work within a generous 
period of time, e.g. a year. Bringsjord’s test seems unduly biased against the 
computer, by allowing access well beyond what is possible with human subjects. The 
test almost seems to invoke the ancient meaning of inspiration, requiring a mythical 
breath of creativity to enter the machine, as it appears that any computer that could 
pass this test must go beyond the bounds of what is computationally possible. The 
more mundane alternative is that the processes involved are so complex that it would 
take longer to understand than is available. Creative processes may well be complex 
but there is no reason to assume so in advance: evolutionary systems are 
computationally quite simple and yet they are capable of producing novel and useful 
products. 

7.3.2 Testing for Creative Behaviour 
The development of agents that can assess the novelty of their own works and act 
upon that assessment to further explore design spaces suggests a third aspect of a 
computational system that can be tested; the behaviour of the system over extended 
periods of time. This test for behavioural creativity recalls the “imitation game” 
proposed by Turing as a test for intelligence. Turing’s “imitation game” allows an 
interrogator to assess the behaviour of two participants using a series of probing 
questions and answers. If at the end of a session the interrogator cannot determine 
which of the participants is a computer then Turing suggested that the machine must 
be declared intelligent. 
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It is tempting to assume that the evaluation of products constitutes a Turing Test 
for creativity, but this is not the case. Products alone do not provide an opportunity to 
probe further into the motivations and goals of the designer. The strength of the 
imitation game proposed by Turing lies in the open-ended nature of the possible 
dialog between the human interrogator and the participants of the test. As Turing 
(1950) notes, “the question and answer method seems to be suitable for introducing 
almost any one of the fields of human endeavour that we wish to include.” Turing 
gave the following extract of a possible dialog to illustrate his point: 

Q: Please write me a sonnet on the subject of the Forth Bridge.  
A: Count me out on this one. I never could write poetry.  

Q: Add 34957 to 70764  
A: (Pause about 30 seconds and then give as answer) 105621.  

Q: Do you play chess?  
A: Yes.  

Q: I have K at my K1, and no other pieces. You have only K at K6 and R at R1. It is your 
move. What do you play?  
A: (After a pause of 15 seconds) R-R8 mate. 

In support of the use of the “imitation game” as a test of creativity, Hofstadter 
(1995b) argued that “covert mechanisms can be deeply probed and eventually 
revealed merely by means of watching overt behaviour” and that this “lies at the very 
heart of modern science”. Certainly, when Turing proposed his test he meant for it to 
encompass tests for creative behaviour as illustrated by the request to compose a 
sonnet. Hofstadter suggests that even in a scaled-down version of the Turing Test, the 
systematic probing of a system should reveal the nature of its creative abilities. For 
example, a computer system that relied on a narrowly defined grammar to produce 
works of a particular style would soon be uncovered by the formulaic nature of its 
responses to repeated requests. 

7.3.2.1 The Importance of Asking “Why?” 
One of the most important devices available to an interrogator in a Turing Test 
designed to ascertain the creativity of a computer system is the simple question 
“Why?” The use of this question is the key to uncovering the mechanisms at work 
when creative artefacts are produced as well as the context within which they should 
be considered creative. Asking a computer system to explain why its work is creative 
is also in agreement with Csikszentmihalyi’s observation that convincing others of the 
value of a creative work is often harder than producing it (Csikszentmihalyi, 1999). 

The request for an explanation of why something should be considered creative is 
the logical extension of requirement that an agent be able to recognise that it has 
produced something creative. The response should reveal the context within which the 
computer system has judged its work to be creative. This is an important aspect of 
creativity that cannot be determined from either the product or the process tests of 
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creativity described above. The situation that a creator was in when a work was 
produced is fundamental to any attribution of creativity. Producing the same work 
twice does not generally mean that a person is twice as creative; the requirement for 
novelty in creative works means that the second production is unlikely to be 
considered creative, no matter how creative the first work was determined to be. 

Could future curious design agents pass a Turing Test of creativity? The Turing 
Test sets a very high standard for artificial creativity, how could a curious design 
agent hope to pass such a test? The important thing to note is that the curious 
exploration process relies upon the comparison of situations and this gives curious 
design agents the contextual understanding of the creative process needed to explain 
the creativity of their works. Consider the following dialog between an interrogator 
and a curious design agent set the now familiar task of designing a doorway: 

Q: Please recommend a design for a doorway to facilitate the efficient and comfortable 
passage of opposing crowds within a confined space.  
A: (After a suitably long pause.) I recommend that you use a double doorway design; use 
two standard width doors placed 0.25m apart in the centre of the wall. 

Q: Do you think your design is creative? 
A: Yes. 

Q: Why is it creative? 
A: The double doorway costs the same to install as a wide doorway measuring twice the 
width of a standard door but the double doorway is much more efficient at allowing 
crowds to pass through, and the crowds pass through with greater comfort. The 
efficiency of the double doorway was unexpected given its similarity to the wide 
doorway. 

Q: Why does the double doorway work so well? 
A: I don’t know. 

This question and answer session illustrates two important aspects of the 
representations built by a curious design agent (1) it can answer the question of 
whether it thinks it has produced a creative product, and (2) it can explain, to a limited 
extent, why it thinks it is creative. The doorway design knowledge needed to answer 
these questions is little more than what is already available to the doorway design 
agent at the end of a curious exploration of the space. The current doorway design 
agent can recognise the novelty, and hence potential creativity, of the double doorway 
design and it does so by relating its superior performance to the similar wide doorway 
design. 

The last question in the above session also shows the limits of the model of 
curiosity currently implemented in curious design agents; although they can recognise 
and explore the novelty of a situation, they do not have the capacity to formulate ways 
of understanding the causes of novelty. How to provide an agent with the ability to 
explore aspects of a curious situation with such flexibility remains an open question. 
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7.3.3 Studying Creative Behaviour 
The emergence of social behaviour, e.g. The Law of Novelty, and dynamic social 
structures, e.g. cliques, in The Digital Clockwork Muse suggests that the artificial 
creativity approach to developing models of creative societies may contribute new 
insights into the nature of creative design in socio-cultural situations. 

Figure 7.4 illustrates the different levels at which creativity may be studied as a 
pyramid of emergent properties. Each level represents a different aspect of creativity 
that is emergent from the ones below it. The foundations of the creative pyramid are 
the processes internal to the creative agent that allows it to generate-and-test ideas. 
The result of executing these processes is the creative products. Traditionally, 
computational research has concentrated on these two levels by encoding processes 
thought to be important in creativity in a piece of software and getting experts to 
examine the results of running those processes to determine whether the processes are 
creative; the higher levels of the pyramid are not modelled in the software and are 
provided by people. 
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Figure 7.4: A pyramid of creativity. 

Artificial creativity suggests a different approach; instead of evaluating the 
products of a piece of software to determine its creativity, it focuses upon the 
behaviours of agents and artificial societies. Artificial creativity is concerned with 
modelling the creative behaviours of individuals, e.g. curiosity, and studying the 
emergent social behaviours when individuals are put together. Because individuals in 
an artificial creativity simulation must be able to evaluate the creativity of 
communicated products and hence other individuals, the details of the products of 
individuals become less important. More important in the study of artificial creativity 
are the socio-cultural structures that emerge as a consequence of the communication 
of products and evaluations. 

The artificial creativity approach permits the computational study of highest levels 
of creativity illustrated in Figure 7.4 without having to develop agents that can 
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integrate, and achieve creative status, in human society. Artificial creativity 
simulations permit the experimentation with creativity in artificial societies that would 
be impossible in the real world, allowing the study of creativity-as-it-is in the context 
of creativity-as-it-could-be. 

7.4 CONCLUSIONS 
This chapter has presented some future directions for research using curious design 
agents and artificial creativity, these possibilities fall into three categories: 

1) Address the limitations of the model of creative design presented here 
by applying curious design agents to more realistic design problems. 

2) Investigate the usefulness of curious design agents in the user interface 
as assistants to human designers exploring complex design domains. 

3) Explore the implications of developing autonomous models of creative 
design that can explain why their designs are creative. 

This chapter has attempted to address some possible criticisms of the curious 
design agents presented in this thesis. It has also explored some possible applications 
of curious design agents in CAD systems. Some thoughts about how the model of 
curiosity presented in this thesis might contribute to the development of an agent that 
could pass a Turing Test of creativity. It is suggested that the curious exploration of 
design spaces provides a curious design agent with the appropriate knowledge to 
make a simple case for the creativity of its work. 

 



 105

Chapter 8  

Conclusions and Future Work 

This thesis started with the goal of establishing curiosity as an important new topic for 
design computing research. The goal was divided into subgoals within three main 
areas: 

1) to computationally define a model of curiosity, 

2) to find useful applications of the model in design, 

3) to define an approach for the future study of curiosity in design. 
The goals in all three of these areas have been successfully achieved. 

8.1 A COMPUTATIONAL MODEL OF CURIOSITY 
Chapter 4 described the computational model of curiosity used in this research and 
provided details of the implementations used. The computational model provides a 
way to augment situated agents with curiosity by monitoring the conceptual state of 
the agent.  

Unlike other processes found in design agents, the focus of curiosity is on the 
conceptual state, internal to the agent, rather than the external state of the design. 
Curiosity is concerned with determining the interestingness of experiences from the 
perspective of the potential for an agent to learn. The novelty of experiences is 
detected by comparing the conception of a situation with expectations constructed in 
long-term memory from previous experiences. The interestingness of experiences can 
be determined from the novelty detected by applying a transformation based upon the 
arousal response curve found in humans when faced with novel situations, that 
favours similar-yet-different situations to those previously experienced. 

The computational model of curiosity provides an effective way to identify those 
experiences that are likely to have the greatest potential for learning in a short period 
of time. Curiosity thus motivates design of interesting artefacts by rewarding the 
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production of similar-yet-different experiences. The ability of curious design agents to 
recognise the interestingness of new experiences supports the modelling of creative 
design and social creativity. 

8.2 APPLICATIONS OF CURIOUS DESIGN AGENTS 
Several applications of curious design agents have been presented, divided by the 
methods used to explore design spaces and the domains studied. Curious design 
agents have been shown to use direct manipulation, parametric design and design 
tools to explore design spaces in visual and non-visual domains. 

Curious design agents have been applied to the domains of rectilinear drawings, 
Spirograph patterns, genetic artworks and doorway design. They have shown interest 
in emergent shapes and patterns in visual domains and emergent crowd behaviour in 
pedestrian simulations. 

Curious design agents have been demonstrated exploring solution space to find 
interesting solutions, where interesting can be either because the performance is better 
or worse than expected. Curious design agents have also been shown to explore 
problem spaces where the goal is to find problems that are interesting because they 
challenge the assumptions made in the design of previous solutions. In both cases, 
curiosity motivates the agent to explore the design space to find both “good” and 
“bad” examples because both help to map the design space. 

8.3 ARTIFICIAL CREATIVITY 
The artificial creativity approach to developing computational models of creativity in 
design societies, described in Chapter 2, is a useful way to study social creativity. The 
artificial creativity approach developed from an attempt to model Martindale’s “Law 
of Novelty” (Martindale, 1990), but it soon became apparent that the model could 
provide other insights into the behaviour of creative societies and the development of 
creative styles beyond Martindale’s law. 

The demonstration of the artificial creativity approach in Chapter 6 shows that it 
provides a way to study the emergent behaviour of creative societies without the need 
to develop complex design agents capable of interacting with and contributing to 
human society. The essential element of curious design agents that make artificial 
creativity simulations so interesting is the ability of each of the agents to assess the 
potential creativity of a design and share these evaluations with others. There is no 
central definition of what is creative in an artificial creativity simulation and this 
permits the emergence of individual notions of whom and what are creative as well as 
the spontaneous formation of social structures such as cliques. 

The artificial creativity approach opens up new avenues of research, for those 
interested in studying the social nature of creativity, not available in the study of 
human creativity and not previously considered by computational models of creative 
thinking. Like other fields that have adopted distributed agent simulations of social 
phenomena as a useful method of research (e.g. economics, computational sociology, 
computational anthropology), design computing stands to benefit from the adoption of 
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the artificial creativity approach as a way of understanding creative design in its 
widest sense. 

The ability to model creative designing in heterogeneous societies of agents, 
promises to expand the computational study of design to include the modelling of 
economic and political factors in the development of creative designs. 

8.4 FUTURE RESEARCH 
Artificial creativity and curious design agents provide a broad platform for future 
research as indicated in the previous chapter’s discussion, however, several practical 
research directions promise considerable insights in the near future: the adaptation of 
existing computational models of creative design to incorporate curiosity, the 
construction of a distributed version of The Digital Clockwork Muse model, and the 
assimilation of humans within artificial creativity systems. 

8.4.1 Adapting Existing Computational Design Systems 
The curious design agents described in this thesis have been developed to study 
curious behaviour rather than the processes involved in designing. The extent to 
which they have achieved this goal is that they exhibit curious behaviour similar to 
that observed in humans during the early, conceptual, phases of design. There has 
been little attempt to develop full design systems capable of solving real world design 
problems, principally because this would have complicated the study with more 
complex design processes and utilitarian evaluation functions. Despite this, almost 
every one of the applications described in this thesis could become the subject of a 
much larger study. 

One approach to the study of more complete applications would be to take an 
existing computational model of design and add an implementation of the model of 
curiosity presented here. The simplest way to achieve this would be to use a curious 
design agent to guide the evolution of an existing design tool. The evolutionary design 
systems that have been developed in various domains are ideal candidates. For 
example, Gero and Schnier’s evolutionary design system (Gero and Schnier, 1995; 
Schnier, 1999) uses “genetic engineering” to support the evolution of new designs in 
specific style by constructing common building blocks found in previous examples of 
the style. Using a curious design agent to guide the evolutionary process would 
promote the evolution of “interesting”, i.e. similar-yet-different, examples of the style 
and allow the evolution of the style beyond its original bounds in a controlled manner, 
complementing the learning process of both the agent and the evolutionary process. 

8.4.2 Distributing the Digital Clockwork Muse 
The full potential of curious agents can only be properly realised in systems 
comprised of multiple agents, for it is the ability of curious design agents to recognise 
the potential creativity of their own achievements that makes them a interesting tool 
for future research. The artificial creativity approach outlined in the thesis provides a 
method for combining many curious design agents into large artificial societies, but 
the implementations developed so far have been constrained by the need to run 
simulations within a reasonable amount of time on a single computer. An 
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implementation goal for future research must be to break this limitation by allowing 
artificial creativity simulations to be run on multiple processes and across networks of 
computers. 

The loosely coupled nature of the message passing agents developed for The 
Digital Clockwork Muse Project is ideal for developing distributed simulation 
systems and computational frameworks that would allow the development of such 
systems with little effort. The expectation is that massively parallel simulations of 
creative societies comprised of curious agents already described would permit the 
study of emergent social structures on a larger scale and over longer time-spans. The 
development of the additional simulation facilities described in the previous chapter 
would add even greater richness to the behaviours. In particular, the study of emergent 
fields and domains in large-scale systems would provide an opportunity to study the 
processes involved as new design disciplines emerged. 

8.4.3 Assimilating Human Designers 
The ultimate goal of developing distributed artificial creativity models may be to 
reverse the traditional role of computational design systems in human societies and 
allow people to be assimilated into the collective of an artificial society. Interactive 
versions of The Digital Clockwork Muse would provide the opportunity for 
experimenting with artificial societies from the inside, rather than passively observing 
them from the outside. The possibility of developing on-line societies of curious 
design agents co-operatively exploring design spaces with human designers is so 
different from our current notions of computational design systems that it may take a 
great deal of study for the true potential of these types of systems to be realised. 
Already there is much interest in collaborative design between people using “avatars” 
but artificial creativity systems presents the possibility of having computational 
design agents autonomously exploring design spaces and usefully interacting with 
human designers when they find interesting design problems or solutions. 

The vision of on-line communities of computational agents interacting with 
human designers through a virtual reality is reminiscent of the on-line game 
environments that have become popular with the advent of the Internet. Similarly 
game-inspired research has proved successful in facilitating design communication 
(e.g. Maher et al., 2001). As Goertzel (1997) has noted, intelligent computers are 
likely to develop “design intuitions” about on-line environments that will never be 
achieved by human designers. Unlike humans, autonomous design agents have been 
designed for an existence in the virtual worlds in which they exist and therefore have 
been developed to interact with the world without the need to first translate their 
experiences into the real world in which we exist. We might reasonably expect that, in 
the future, truly creative design in virtual environments will accomplished by artificial 
societies of autonomous design agents co-operating with human clients. 

8.5 SUMMARY 
The research presented in this thesis has examined an array of design applications for 
curious design agents, from a single agent directly manipulating rectilinear sketches to 
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artificial societies of agents collectively exploring the design space of genetic 
artworks. The conclusions that can be drawn are that curiosity is an important 
motivational force in the exploration of design spaces that can be modelled 
computationally to develop design agents that can autonomously explore in a familiar 
way. Curious design agents have the ability to explore and learn about potentially 
important aspects of a design space in advance of a need to apply the knowledge 
gained. The artificial creativity approach that has arisen from the simulation of 
multiple curious design agents in a social environment has suggested new directions 
for research of creative designing on a much larger scale than has been done before 
with creative design systems because it removes the need for human observers in the 
evaluation of designed artefacts. 

Future research into the applications of curious design agents and artificial 
creativity is open to many directions, and, as with any complex system, the outcomes 
are hard to predict, but they appear to be worth pursuing, because they will 
undoubtedly continue to provide insights into many aspects of design and creativity 
and possibly provide practical systems for creative designing in both real and virtual 
environments. 
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Appendix A 

Publications Arising from this Research 

Constructed Representations and their Functions in Computational Models of 
Designing 

Gero, J. S. and Saunders, R. (2000) Constructed representations and their functions in 
computational models of designing, in B–K. Tang, M. Tan and Y–C. Wong (eds), 
Proceedings of the Fifth Conference on Computer Aided Architectural Design 
Research in Asia (CAADRIA 2000), CASA, Singapore, pp. 215–224. 

This paper re-examines the conclusions made my Schön and Wiggins in 1992 that 
computers were unable to reproduce processes crucial to designing. We propose that 
recent developments in artificial intelligence and design computing put us in a 
position where we can begin to computationally model designing as conceived by 
Schön and Wiggins. We present a computational model of designing using situated 
processes that construct representations. We show how constructed representations 
support computational processes that model the different kinds of seeing reported in 
designing. We also present recently developed computational processes that can 
identify unexpected consequences of design actions using adaptive novelty detection. 

Designing for Interest and Novelty: Motivating Design Agents 
Saunders, R. and Gero, J. S. (2001a) Designing for interest and novelty: motivating 

design agents, in Proceedings of CAAD Futures 2001, Eindhoven. 

This paper is concerned with the motivation of design agents to promote the 
exploration of design spaces. A general form of motivation common to designers is a 
curiosity to discover interesting designs. This paper presents computational models of 
interest and curiosity based on the detection of novelty. We illustrate the behaviour of 
our model of interest by developing a design agent that is motivated to explore the 
effects of emergent crowd behaviours on the performance of doorways. 
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A Curious Design Agent: A Computational Model of Novelty-Seeking Behaviour 
in Design 

Saunders, R. and Gero, J. S. (2001b) A curious design agent: A computational model 
of novelty-Seeking behaviour in design, in Proceedings of the Sixth Conference on 
Computer Aided Architectural Design Research in Asia (CAADRIA 2001), The 
University of Sydney, Australia. 

This paper presents a “curious design agent”, i.e. an agent that uses the search for 
novel designs to guide its design actions. A computational model of curiosity based 
on a process called novelty detection is presented.  The behaviour of the 
computational model is illustrated with a curious design agent searching the space of 
two-dimensional patterns generated by a simulated Spirograph is reported. 

The Digital Clockwork Muse: A Computational Model of Aesthetic Evolution 

Saunders, R. and Gero, J. S. (2001c) The Digital Clockwork Muse: A computational 
model of aesthetic evolution, in G. Wiggins (ed.), Proceedings of the AISB'01 
Symposium on AI and Creativity in Arts and Science, SSAISB, York, UK. 

This paper presents a computational model of creativity that attempts to capture 
within a social context an important aspect of the art and design process: the search 
for novelty. The computational model consists of multiple novelty-seeking agents that 
can assess the interestingness of artworks. The agents can communicate to particularly 
interesting artworks to others. Agents can also communicate to reward other agents 
for finding interesting artworks. We present the results from running experiments to 
investigate the effects of searching for different degrees of novelty on the artworks 
produced and the social organisation of the agents. 

Artificial Creativity: A Synthetic Approach to the Study of Creative Behaviour 

Saunders, R. and Gero, J. S. (to appear) Artificial creativity: A synthetic approach to 
the study of creative behaviour, Fifth International Roundtable Conference on 
Computational and Cognitive Models of Creative Design, Heron Island. 

We present a novel approach to the computational study of creativity, called Artificial 
Creativity. Artificial Creativity promotes the study of the creative behaviour of 
individuals and societies in artificial societies of agents. It is similar to the approach to 
that taken by Artificial Life researchers involved in developing computational models. 
We present a framework for developing Artificial Creativity systems as an adaptation 
of Liu’s dual generate-and-test model of creativity. An example implementation of an 
Artificial Creativity system is presented to illustrate the potential benefits of our new 
approach as a way of investigating the emergent nature of creativity in societies of 
communicating agents. Finally, we discuss some future research directions that are 
possible by extending the abilities of individuals and studying the emergent behaviour 
of societies. 



 122

Appendix B 

Instructions for Using the Enclosed CD-ROM 

The CD-ROM enclosed with this thesis has some example applications and videos to 
illustrate the domains explored by curious design agents. The CD-ROM also contains 
a complete copy of the thesis in Adobe Acrobat format, i.e. PDF. To view this 
material the Acrobat Reader browser plug-in is required. The plug-in can be 
downloaded from Adobe’s website: http://www.adobe.com/ 

The CD-ROM is organised as a small website; the easiest way to explore the 
contents is using a modern web browser. To view the applets the browser must 
support Java v1.1 or later, e.g. Microsoft Internet Explorer 5.0+. To explore the 
contents of the CD-ROM open the file index.html in the root directory. This file 
contains the main menu for the CD-ROM and allows access to the various documents, 
applets, and videos. 

8.6 CONTENTS 
The main menu is divided into three sections: Thesis, Applets and Videos. The first 
section contains the full text to this thesis in Adobe Acrobat format. The thesis is 
available either as a single file containing the whole document or as separate chapters. 
If the Acrobat Reader plug-in has been installed correctly then the files should open 
automatically when they are clicked on. If there is any problem accessing these files 
through a web browser, they can be located in the directory called “thesis” for 
viewing outside of a browser. 

The applets have been divided into three types. First, there are demonstrations of 
neural network learning using a simple 2D input space as described in Chapter 4. 
Second, there are a couple of applets that allow the reader to explore some of the 
domains explored by curious design agents in Chapter 5 & 6. Finally, there are two 
examples of curious agents; the first curious agent was discussed in Chapter 7, the 
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second has not been presented in this thesis but may be interesting for readers that 
wish to observe curious behaviour in a very simple environment. 

The video section contains a link to a selection of videos that illustrate some 
typical examples of the emergent crowd behaviour explored by the curious design 
agent in Section 6.1. The videos have been provided in Microsoft AVI format and 
Apple QuickTime. To view these videos you will require either Windows Media 
Player or Apple’s QuickTime movie player. 
 


