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Abstract

This paper reviews the development of computational models of creativity where

social interactions are central. We refer to this area as ‘computational social creativity’.

The context surrounding computational social creativity is described, including:

the broader study of creativity, the computational modelling of other social phenom-

ena, and computational models of individual creativity. Computational modelling has

been applied to a number of areas of social creativity and has the potential to make

a contribution to our understanding of creativity. A number of requirements for com-

putational models of social creativity are common in artificial life and computational

social science simulations.

Three key themes are identified: (1) computational social creativity research has a

critical role to play in understanding creativity as a social phenomenon and advancing

computational creativity by making clear epistemological contributions in ways that

would be challenging for other approaches; (2) the methodologies developed in artifi-

cial life and computational social science carry over directly to computational social

creativity; and, (3) the combination of computational social creativity with individual

models of creativity present significant opportunities and pose interesting challenges
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for the development of integrated models of creativity that have yet to be realised.

Keywords: social creativity, multi-agent modelling, computational social science, compu-

tational creativity.

1 Introduction

Artificial Life (ALife) has contributed to our understanding of biological processes in real

life and in “life as it could be” [43], with particular emphasis on understanding emergent

processes: those processes by which something new comes about through the interaction

of existing elements. Computational Social Science (CSS) shares a common history with

ALife and also treats mechanisms of emergence as central to its capacity to contribute to

knowledge [17]. A third related field of multi-agent modelling directly concerned with the

study of creativity can now be distinguished. It is at an earlier stage of development, with

work often falling under the scope of ALife, CSS or Computational Creativity (CC) [48].

We refer to this field here as Computational Social Creativity (CSC). The goal of CSC

is to contribute to the understanding of human creativity as a social phenomenon using

multi-agent computational models, and consequently to contribute more generally to an

understanding of creativity.

This article discusses this emerging field. We begin by describing the context sur-

rounding CSC, in which we discuss its relationship to the wider study of creativity and to

computational modelling, as well as the relationship between social and individual models

of creative behaviour (Section 2). We then review areas in which computational models

are applied to social creativity, including a “prehistory” of CSC (Section 3). We discuss

the potential for CSC to make a contribution to the understanding of creativity (Section

4). Drawing on this review, we present a number of opportunities provided by a CSC
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approach, and lay out a set of requirements for computational models of social creativity,

based on similar theoretical discussions in ALife and CSS.

2 Computational Modelling in the Study of Creativity

Research devoted to understanding creativity spans a wide range of disciplines from history

to computational modelling. One of the most widely accepted definitions of creativity,

particularly within computational creativity, is that it is an ability to produce outcomes

that are both novel and valuable [6]. Both aspects are subjective; value depends on a use

or context, and novelty requires a metric in which similarity is measured. In particular,

novelty can be considered in terms of the violation of an observer’s expectations, for which

the term “emergence-relative-to-a-model” was introduced by Cariani [14] with reference

to ALife. Creativity can also be seen as having a ‘scope’. For example, Gardner [33]

distinguishes between little-c (mundane) and big-C (eminent) creativity.

Many researchers concerned with creativity as a contribution to a collective body of

knowledge (i.e., big-C) believe that creativity needs to be studied as the product of a

multi-actor system [19, 35, 70, 50]. Even when the focus is on the psychology of the

creative individual, evidence reveals the interdependency between individual and social

process. Tardif and Sternberg [75] and Martindale et al.[51] found that the perception

of creativity changes with exposure to examples of works. This research highlights how

the social-cultural context informs the motivations, judgements and strategies of creative

individuals.

Theoretical frameworks that attempt to take into account super-individual factors are

often described as “systems theories”, deriving from the view of societies as systems, poten-

tially sharing properties with systems found in other domains. Vygotsky first proposed a

systems theory of creativity emphasising the reciprocal relationship between creative indi-
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viduals and their socio-cultural environment [78]. In Vygotsky’s theory, creative individuals

are both influenced by their personal understanding of their socio-cultural environment and

through their actions cause changes in their environment [45].

Csikszentmihalyi proposed a systems views of creativity [19], which he later developed

into the Domain Individual Field Interaction (DIFI) theory of creativity [28]. The latter

sets out to systematically describe the components and interactions involved in creativity:

the domain is a repository of knowledge held by the culture; the individual brings about

some transformation of the knowledge held in the domain; the field is a set of social

institutions that selects the knowledge that is worth preserving. The DIFI model associates

the common use of the term “creativity” to transformations of knowledge by individuals

that when judged by the field are determined to have a significant impact on the domain,

i.e., big-C creativity, but also recognises that the entire system is required for this creativity

to occur. A number of other researchers have examined systems-theoretic formulations,

such as Luhmann’s [46] and more recently Iba’s [39] autopoietic approaches.

Researchers also aspire to achieve creativity in different ways at both social and in-

dividual levels, from improving innovation in organisations to building artificial creative

systems that produce music and art. Theories of organisational structure may propose how

to maximise creativity at the social level. The goal of building artificial creative systems

is the primary focus of CC research, to which we now turn.

2.1 Three Types of Model

Computational creativity is a relatively young field [13], situated within Artificial Intelli-

gence (AI) and with links to the early studies of discovery systems within AI. According to

the co-founders of the International Conference on Computational Creativity (ICCC), com-

putational creativity “places a vocational emphasis on creativity and attempts to draw to-
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gether the commonalities of what human observers are willing to call ‘creative’ behaviours”

[13, pages 15–16]. We identify three core strands of modelling that contribute to CC re-

search:

Computational models of abstract creativity: By taking a broad view of creativity

as any process in which novel outcomes emerge, many systems other than individual

human brains can be described as creative. For example, biological evolution has

been described as a creative process [4], bringing novel living systems into the world.

Simple computational models such as Conway’s ‘Game of Life’ can be said to exhibit

emergence by producing behavioural properties that are not written into their rules,

showing in principle how computers may be capable of processes leading to open-

ended, or, at least, advanced levels of generative complexity. Open-ended generativity

is one of Bedau’s open problems in ALife [3], and a number of results, e.g. [72], suggest

that this is a potentially irresolvable issue. Thus despite having nothing to do with

modelling human cognition, the ‘Game of Life’ might optimistically be defined as a

“minimally creative” process. Some researchers have sought to extend such abstract

ALife-based approaches within the field of CC [56, 54, 63, 55].

Accordingly, strands of CC are methodologically similar to ALife. These models

are explored for the formal properties that they exhibit, such as degree of diversity,

organisational complexity, or less formal qualitative properties. For example, the

emergence of a new, qualitatively different, fighting strategy in a competitive coevo-

lution model may be described as a creative event [71] from the perspective of an

observer.

Computational models of cognitive processes: Cognitive aspects of creativity lie at

the heart of the CC literature. What cognitive processes go into the creation of a
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valued artwork or a novel design by a human? Can we recreate these, or equivalent

processes, in software? At first sight this area of modelling research resembles tra-

ditional cognitive modelling, such as models of perception, in which measurements

of human behaviour are used to evaluate the accuracy of the model. A number of

CC researchers build software systems that generate cultural artefacts such as visual

artworks and music, with the intention that such outputs may be compared to human

artworks in informative ways, e.g., [16, 76, 26, 44].

But the evaluation of models remains an empirically challenging issue. CC theorists

have undertaken to formalise the epistemological contribution this work makes (e.g.,

[82, 60]), attempting to formulate a common methodology built around the creation of

artefacts by machines, and their evaluation by humans. For this, the categorisation of

creative acts, such as Boden’s triad of combinatoric, exploratory and transformational

creativity [5, 6] underlies the field’s conceptual framework, supported by attempts to

categorise the evaluation of creative outputs according to a number of criteria, either

by humans or automated systems [62, 40, 49].

CC modelling in artistic contexts sometimes overlaps with forms of creative practice-

based research, following the pioneering work of artist-programmers such as Harold

Cohen [53]. Alternatively, the production of creative systems that involve collabora-

tive input from both humans and computers can be viewed as applied design research

focusing on the human user experience scenarios that emerge from working with such

systems in practice [8]. This is increasingly being recognised in the practice of CC

researchers as they look at how their computational models operate as artefacts in

social interaction contexts.

Computational models of social creativity: Understanding the impact of social fac-
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tors in human creativity is a large empirical research area grounded in disciplines

such as organisation science and economics, and with practical goals such as improv-

ing creativity by structuring companies, collaborative teams or even cities effectively.

The research includes predictive models of the relationship between contextual factors

and creative outcomes, as in [15], where a predictive model is used to understand the

indicated degree of creativity of actors based on their position within a social network.

In the context of CC, researchers approach the same subject matter by looking at

the qualitative outcomes of multi-agent models within which artefacts are produced

and shared. Researchers developing computational models of social creativity seek

to understand a wide number of patterns of behaviour related to creativity, such

as trends in music, art and design fields, and the impact on the creative process of

certain organisational structures. Examples of modelling creativity in the qualitative

style associated with ALife research include [64, 34, 81, 58, 10, 74, 30].

Often working with simplified multi-agent systems, CSC research is not focused on

the details of cognitive processes or the production of creative outputs. Instead, the

discovery or demonstration of identifiable mechanisms to produce social phenomena

associated with creativity forms the core contribution to knowledge.

Typically, computational models of creativity fall into one of the above approaches, but

there is clearly potential for all three approaches to be combined.
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3 A History and Prehistory of Computational Social Cre-

ativity

We turn to look in more detail at examples of models that can either be described as CSC

or as a part of its ‘prehistory’. These are organised according to the aspect of creativity

being explored, and the methodology used in making a contribution to knowledge.

3.1 Emergence as a creative process

According to systems views of creativity, new outcomes depend not only on individual

innovations but on super-individual processes: a network of interactions between people

and things. Just as biological evolution can be creative with no cognitive processes involved,

social processes can cause new structures to emerge without recourse to explicit processes

of creative cognition [7]. An important area of modelling looks at the creative capacity

existing at this super-individual level.

Amongst the computational models of social phenomena from the 60s and 70s that have

since risen to canonical status, Schelling’s [68] model of social segregation stands out for

its simplicity. The spatial model showed the imposition of a weak bias in individual agents

resulting in a marked effect at the macro-level. Schelling used a simple cellular grid model

where each grid cell could be populated by one of two kinds of individual. Individuals have

a moderate preference to be surrounded by individuals of the same kind as themselves, and

are sequentially given the opportunity to relocate. The result is a clear self-organisation

of individuals, from a random scattering to an alternating patchwork of regions. A simple

rule at the individual level results in a novel structure at the macro-level. This bottom-up

causality is familiar to ALife researchers.

Schelling’s model is illustrative of the epistemological nature of CSS modelling for a
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number of reasons. Firstly, it has qualitative outcomes; the model is concerned with

showing the relationship between individual behaviour and qualitative macroscopic effects.

Secondly, although hypothesised as applying to real social dynamics, it is not directly

focused on modelling real-world empirical data; the demonstration of the process is the

main contribution to knowledge, not the modelling of the behaviour of a real world system.

Indeed, a modelled phenomenon may not actually occur in the real world, but can still be

known as a real phenomenon with theoretical value. Thirdly, the model is simple enough

to understand and analyse, and general enough that it can become a laboratory for further

experimental questions. For example, in Schellings case, one can perform analysis on the

long-term behaviour of agents at the boundary between different regions; see [37] for a

review of variation to Schellings original model.

Qualitative computer simulation modelling frames its contribution to knowledge by

asking, Is it possible that macro-effect X is achieved by process Y? Such ‘is possible’

statements take the form of empirical discoveries in a computational research laboratory.

Often known as proofs of concept, such studies have been compared to thought experiments

in the natural sciences [22]. In CSS they are referred to as generative [17], describing the

ultimate epistemological outcome, which is to support the understanding of a potential

process by implementing it in a model and showing how it works. Classic examples of

agent-based models from ALife include Hinton and Nowlan’s demonstration of the Baldwin

Effect [38], Axelrod’s demonstration of the emergence of cooperation through kin-selection

[2] and Sim’s Evolved Virtual Creatures [71], often cited in CC and ALife literature alike.

Simple computational models, e.g., [2, 27], have confirmed the validity and impact of

this approach. None of these works explicitly study creativity, but much research in both

ALife and CSS provides knowledge, methods and inspiration for CSC, particularly in the

context of emergence, where new systems and structures come into being as a result of
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interaction between multiple agents.

3.1.1 Modelling properties of social creative systems

Besides individual creative acts, a greater understanding of art, music, fashion and other

cultural phenomena as creative domains can be achieved by modelling their high-level dy-

namics. Our understanding of creative cognition can be used in models of these high-level

dynamics. Equally, an understanding of these dynamics may contribute to our ability

to model creative cognition by providing more detailed requirements for how creative be-

haviour should play out.

Drawing on the systems view of creativity introduced by Csikszentmihalyi [20], Saun-

ders and Gero [65, 66] implemented a computational model of social creativity using ‘cu-

rious design agents’ able to both generate novel artefacts and evaluate the novelty of

artefacts generated by other agents. In this model, individuals produce novel artefacts and

send those they determine to be significantly novel to other agents in the field for further

evaluation. If a receiving agent determines that the work of a sender is novel according to

its own model, based on experience, it can provide a positive reinforcement signal to the

sender and add the work to the domain of exemplars for the field to draw upon. Simu-

lations of this model demonstrate the emergence of a number of social structures familiar

from human creative societies, e.g., the emergence of ‘cliques’, where a clique is defined

as a subgroup of agents that reward the work of other individuals within the group, while

ignoring the artefacts produced by other agents in the field.

Saunders and Grace [67] combined computational models of the evolution of language

(e.g. [73]) with computational models of social creativity to propose a distributed model

of creative domains that are more than repositories of previously generated artefacts. In

this model, a creative domain is represented by both artefacts and descriptions of those
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artefacts distributed across the agent population. In this model, agents engage in ‘language

games’ to develop commonly held descriptions for properties of things in the world across

a population. Consequently, each agent in this artificial society maintains its own mapping

from features of an artefact in order to reconstruct descriptions on demand. The distributed

representation of domain descriptions permits the study of interactions between domains, as

agents are free to leave or enter social groups and consequently transfer domain knowledge

through their movement.

In an innovative approach, which indicates the future potential of integrating generative

systems with real human evaluation, MacCallum et al [47] have used a generative music

system, in which the music can be evolved over the net by the positive or negative responses

of multiple users, to study the resulting evolutionary trends in the population.

3.1.2 The emergence of creative domains

Finally, creative domains themselves have distinct origins and histories which can be ex-

plored through modelling. An understanding of the nature of specific domains may reveal

irreducible differences between them that challenge the notion that creative activity is

identical in all domains.

The study of the evolutionary origins of language is a domain in which computer sim-

ulation models have had significant impact. Here, specific evolution of language theories

compete using evidence from psychology, archaeology, social science and linguistics. In

a series of computational experiments (e.g. [41, 42]), Kirby and Hurford showed that

a process of non-fitness-based iterated learning was sufficient to explain various proper-

ties of complex language structure such as compositionality and syntax. Steels [73] has

similarly shown the emergence of shared vocabularies of meaning grounded in the world

through iterated multi-agent bouts of communication which he calls “Language Games”,
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after Wittgenstein. Such results, analogous to the emergence of syntax in language, pro-

vide new ideas for understanding and modelling create processes, and demonstrate a new

application area for the principle of self-organisation. For example, Miranda, Kirby and

Todd [58] adapted language models, such as those discussed above, to a musical context.

Other researchers have looked at the biological evolution of human cognitive abilities in

search of the origins of general creative capacities and domain-specific behaviours, such as

musical or visual aesthetic preferences. Gabora has built several models of an evolutionary

cultural system using similar iterated learning dynamics (e.g., [31]) and with di Paola

[32] has attempted to produce models that inform us about the evolutionary psychology

of human creative abilities, in line with a number of theories stemming from evolutionary

psychology such as the work of Donald [23]. Werner and Todd [81] consider sexual selection

as a generator of diversity and study models of the evolution of complexity in birdsong,

hinting that the theory may also apply to human music; a view developed by Miller [57].

Their model focuses on abstract properties such as diversity in the population and its rate

of change, and seeks mechanisms associated with sexual selection that would promote these

features.

Bown and Wiggins [10] also look at evolutionary mechanisms surrounding the evolution

of human musical behaviour. In their case they focus on music as a cooperative system

of social interaction rather than as a sexually selected system. They show that a poten-

tial pathway towards the adoption of musical interaction can occur through kin selection.

Successful cooperative behaviours start with kin before branching out to wider groups.

In their model, a tendency to reward others for musical stimulation evolves, even though

this transfer of reward is not beneficial to the individuals paying it. Kin selection, where

behaviours that are not beneficial to the individual nevertheless evolve because they are

of benefit to sufficiently closely related kin, provides a possible mechanism by which this
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can happen. In a more recent model, Bown [9] investigates an alternative view in which

abstract and non-functional cultural patterns of behaviour emerge autopoietically through

competitive interaction.

4 Opportunities Within Computational Creativity

In this section we continue discussing how CSC can make important contributions to our

understanding of creativity.

CSC avoids methodological issues to do with evaluation. CC has an easily

stated ‘grand challenge’, which dates back to the dawn of AI [52]: build a system that

can produce art/music/designs etc. that are as good as human creative works. But the

evaluation of creative systems has been hard to reductively break down into measurable

properties that would support incremental advances in system development. Demanding

scientific exactitude of phrases above such as as good as (judgement) and on its own

(autonomy) proves challenging. An argument is developed in [7] and [8] that a large part

of the phenomenon of artistic creativity, classified as generative creativity, is missing when

taking this approach.

Population models do not suffer from these issues, but rather allow us to systematically

examine the meaning of these concepts, drawing successfully on the precision of working

with closed computational abstractions, as researchers have successfully done in ALife.

Rather than focus on the ambiguous evaluation of artificially created outputs by humans,

it is the global properties of human creative domains that are modelled. The evaluation

conducted within these closed models by agents can be treated as an objective phenomenon

and the autonomy of agents can also be measured in relation to other elements within the

system. This clarifies the application of terms such as ‘autonomy’ and ‘quality’ to elements

of the model. Furthermore, the outputs of CSC correspond to objective social observations,
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the patterns of behaviour that form in an artistic domain, such as fads and cliques, or

the relationship between the creative success of individuals and their position in a social

network. In such cases the basic methodological principles are aligned with those of ALife

and CSS. CSC thus complements CC by explicating super-individual creative processes,

whilst CC typically attacks individual cognition.

An example study, albeit not a simulation model, is illustrative of the understanding

of social creativity that may be possible using simulation modelling. Cattani and Feriani

[15] study the creativity of both individuals and teams within the film industry using data

from publicly available sources (mainly IMDB: http://www.imdb.com/). These sources

provide information on a number of factors that go into into movie production, as well as

factors associated with its reception. Cattani and Feriani’s approach is novel in conducting

a social network analysis of the community. Building on existing creativity theory, backed

by intuition and anecdotal evidence, they consider the hypothesis that creativity is maximal

for individuals or teams that find an optimal position within the social network between

the centre and the periphery. This hypothesis points to a view of creativity in which

those too close to the periphery are sub-optimally creative due to a lack of familiarity with

practices of the genre, whereas those too close to the centre are sub-optimally creative

because they are over-entrenched in tried and tested norms. It suggests that achieving

optimal creativity requires avoiding being either too conservative or too esoteric. Since the

measure of creativity is based on objective data, any discussion of whether this is actually

creativity is unimportant in this context.

In this example, a link is established between an individual’s situation within a social

context and their effect on that social system’s collective creativity, supporting the view

that the value of creative products is not reducible to a cognitive capacity to produce value.

CSC offers an integrated understanding of creative domains, fields and in-
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dividuals. As a consequence of the context just described, CSC provides a platform for

understanding the motivations and modes of evaluation that underlie creativity in different

domains of activity. Again we use the example of the origins of human musical behaviour;

a subject that Darwin speculated upon [21], that had a resurgence of interest beginning

towards the end of the 20th Century [79] following advances in human music perception

studies and in the understanding of animal vocal communication. Music has clear differ-

ences from language, and has been described as inherently ambiguous [18]. Yet it provokes

strong reactions from people, and is entrenched in all human societies. A number of the-

orists have speculated about the possibility of a common origin for music and language,

which has subsequently branched into two distinct functional communication systems, one

focused on information transmission and the other focused on mechanisms of social inter-

action broadly associated with cohesion [12]. But music has social properties that suggest

candidate functions very distinct from language [36].

Along with art and language, music is one of the core application areas for exploring CC

questions, yet the evaluation of musical artefacts produced by artificial systems continues to

be poorly understood. CSC provides a platform to experimentally investigate hypothesised

conditions surrounding the nature of creative domains and can help answer questions such

as; How would a better understanding of music’s social psychology and demographics alter

the way we think about evaluation in music?

We can also be clearer about distinguishing between the more ambiguous concept of

creativity and the more quantifiable concept of creative success, as illustrated in the exam-

ple above [15]. Creative success has a contextual component – being in the right place at

the right time – for example, getting the right training or getting a first break, which estab-

lishes a feedback of investment, stimulating further success. However, an even more trivial

way in which context can play a role is through “value creation”, where creators actually
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have influence over others’ evaluation. If there is coupling between being able to influence

the taste of others and being rewarded by those individuals then it is theoretically possible

that random individuals producing random creative outputs could rise to be successful.

In the extreme, creative success could be randomly distributed, with differential access to

knowledge or skills not necessary to establish differential success, as discussed in [9].

To our knowledge such aspects of creativity have not been directly explored through

CSC models, although they have equivalents in biological models, such as in the principle

of runaway sexual selection [29], and runaway cultural processes such as those modelled

by Boyd and Richerson [11]. However, there are two related areas of modelling that can

directly inform creativity studies and may make suitable starting points for specific cre-

ativity models. One is social network or small world network studies, such as [80], in which

some individuals become beacons of influence, driven by feedback processes from random

initial perturbations. The other is in models of status and dominance in species, such as

those looking at Dunbar’s ‘social brain hypothesis’ [24].

CSC enables a structured, refineable approach to creativity. Frequently, CC’s

main subcategories follow the domain-specific application areas to which the research is

applied, e.g. music, art, language-based creativity etc. Consequently, CC has tended to be

relatively domain-specific, with little shared experimental practice. A potential problem is

that the field progresses along these domain-specific lines. In the worst case, researchers

have their own isolated systems and spend little time reproducing or adapting the systems

of others. However, the CC community is currently promoting the development of web ser-

vices (e.g., [77]) as practical research platforms to allow computational models of creative

processes to be combined. Similarly, CSC offers an abstract laboratory to investigate the

nature of the creative process in a social setting. This abstraction, and the focus on quali-

tative modelling, allows for sharing, refinement and an incremental approach, providing a
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common platform for investigating generally applicable techniques for modelling creativity

at different stages and scales.

5 What are the requirements of CSC models?

In this section we discuss four properties that are essential (the first two) or desirable (the

last two) for models in CSC. The requirement to demonstrate a mechanism is, we feel, crit-

ical to producing valuable research contributions in this field, echoing similar calls in ALife

and CSS. We are particularly interested in a focus on a mechanism-based methodology for

research in CSC.

5.1 Models must demonstrate a mechanism

ALife and CSS share an approach to modelling which is qualitative and is focused on the

discovery of mechanisms. At the core in both cases is the notion of emergence. Conte et al.

[17] ground the epistemological foundations of qualitative CSS modelling in its generative

nature: a model is constructed using ideas about how individuals behave, and is used to

study the macroscopic effects of this behaviour as multiple agents interact. They describe

‘agentification’ as “the process of formalising a social theory as an agent-based model” (p.

333). This process can be used to test theories of the origins of macroscopic effects by

discovering or demonstrating the efficacy of mechanisms relating individual and macro-

scopic forms. In both CSS and ALife, where individual behaviour includes adaptation, this

can also include the effect of feedback from macroscopic properties leading to changes in

individual behaviour. For example, following Simon’s principle of bounded rationality [69],

Conte et al. [17] explain how social complexity can result from adaptation to changing

environments. Where such a feedback effect is observed in a multi-agent system, genera-

tive modelling is well-suited to the task, since one can simply run the proposed underlying
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process and see where it leads.

5.2 Models must be simple and reproducible

Reproducibility is a core principle in experimental science. In computer modelling, a

trivial form of reproducibility can be obtained simply by sharing software, but the essence

of reproducibility is that it should be applicable to the high-level claims being made, and

results should therefore be reproducible from scratch by independent researchers.

Making simple models benefits this cause both for the communication of results and

their validation by the original author, by minimising opacity and by minimising the gap

between the models and the claims being made about the contribution of these models to

knowledge.

Axelrod, a long-time proponent of the “Keep-It Simple, Stupid” (KISS) principle [1],

helped to drive home the value of this approach in a series of models on the evolution of

cooperation, that are both incredibly easy to follow and understand, but at the same time

informative about processes applicable to high-level social phenomena.

Equally, there is the possibility that work carried out during the end of the 20th Century

has gathered most of the ‘low-hanging fruit’, and that ALife and CSS now face diminishing

returns from a commitment to simplicity. As Conte et al. indicate [17], as we move away

from rationality as a model for human behaviour the individual agent behaviours are likely

to become more complex, and it becomes harder to find solid ground that adheres to the

KISS principle. For CSC this dilemma is prominent, as the behaviour it aims to study is

high-level and highly complex. Although there may be arguments for stepping away from

the KISS principle, such as [25], it remains a compelling position.
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5.3 Models should preferably generate new hypotheses

“Fisher famously said that if we want to explain the prevalence of two-sex organisms, we

should start by explaining what the biological world would be like if there were three sexes

[94]” [17] (p.340). Both in ALife and CSS, the potential to explore hypothetical situations

provides a powerful platform for discovery. Di Paolo et al. have accordingly referred to

ALife models as “opaque thought experiments” [22], which are like thought experiments in

that they merely allow one to step through the consequences of certain assumptions, but

which, unlike thought experiments, are beyond our ability to think through the necessary

steps.

5.4 A strong CSC model would actually be creative and achieve the goal

of CC

Proponents of ‘strong ALife’ view the field as having the capacity to make systems that

are actually alive [59]. Digital ecosystems such as Ray’s Tierra [61] have been argued to

achieve this status. Much of the work that is found in ALife journals and conferences,

however, is more clearly focused on modelling as a means of understanding systems. CSS

has no claim to a strong form, being at the opposite end of the complexity spectrum from

the kinds of artificial chemistries and single-cell organisms that have been described as

complete artificial living systems. But ‘strong CSC’, where an artificial creative social

system is actually creative, even if its individual agents are minimally cognitive, seems

plausible.
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6 Conclusion

This article has given a brief overview of computational social creativity. We have shown

that CSC is already a lively area of research with roots common to ALife and CSS, but

have also attempted to better define CSC as a unique field with independent concerns.

As far as we are aware there has been no attempt so far to define this as a distinct

field, and we believe it will still be some time before a sufficiently large body of work

warrants independent conferences and journals on the subject. In the meantime we hope

this overview can support discussions amongst the ALife and CC communities. Throughout

the paper, three key themes have appeared.

Firstly, CSC is as essential to understanding (and hence incrementally developing)

creativity as a phenomenon as are individual-agent systems. The contribution of CSC lies

in being able to look objectively at phenomena such as creative autonomy and agency, and

the evaluation of artefacts. CSC is able to contribute to an understanding of creativity in

which social processes may be as significant as cognitive processes, and is able to contend

with problems such as how a new creative domain appears. CSC is able to achieve clear

and rigorous contributions to knowledge through detailed simulation experiments in ways

that are hard to achieve with individual-agent systems whose output is typically evaluated

by humans.

Secondly, ALife and CSS provide the methodological rigour that must be carried over

to CSC. Epistemologically CSC is a close relative of these fields. A key notion is the idea

of discovering mechanisms through simulation models, or what Conte et al. [17] refer to as

generative models. Other important principles include simplicity, reproducibility and the

generation of new hypotheses.

Finally, a powerful future area of research lies in the combination of individual and

social models. Our analysis provides pointers for how this can work, but a methodological

20



challenge lies in managing the complexity that arises when sophisticated and potentially

idiosyncratic individual models are brought into the context of simple and easily repro-

ducible multi-agent simulation models. Nevertheless, there is no good reason to believe

that these methodological issues won’t be overcome.

References

[1] Axelrod, R. (2007). Simulation in the social sciences. In Jean-Philippe Rennard (pp.

90–100). Hershey, PA: Idea Group.

[2] Axelrod, R. & Hamilton, W. D. (1981). The evolution of cooperation. Science,

211 (4489), 1390–1396.

[3] Bedau, M. A., McCaskill, J. S., Packard, N. H., Rasmussen, S., Adami, C., Green,

D. G., Ikegami, T., Kaneko, K., & Ray, T. S. (2000). Open problems in artificial life.

Artificial life, 6 (4), 363–376.

[4] Bentley, P. J. (1999). Is evolution creative? In Bentley, P. J. & Corne, D. W. (Eds.),

Proceedings of the AISB’99, (pp. 28–34). Citeseer.

[5] Boden, M. A. (1990). The Creative Mind: Myths and Mechanisms. London: Cardinal.

[6] Boden, M. A. (1994). Dimensions of creativity. Cambridge, MA: MIT Press.

[7] Bown, O. (2012). Generative and adaptive creativity. In J. McCormack & M. d’Inverno

(Eds.), Computers and Creativity (pp. 361–381). Berlin: Springer.

[8] Bown, O. (2014a). Empirically grounding the evaluation of creative systems: Incorpo-

rating interaction design. In Colton, S., Ventura, D., Lavrac̆, N., & Cook, M. (Eds.),

Proceedings of the 5th International Conference on Computational Creativity, Ljubljana.

21



[9] Bown, O. (2014b). A model of runaway evolution of creative domains. In Colton,

S., Ventura, D., Lavrac̆, N., & Cook, M. (Eds.), Proceedings of the 5th International

Conference on Computational Creativity, Ljubljana.

[10] Bown, O. & Wiggins, G. A. (2009). From maladaptation to competition to cooperation

in the evolution of musical behaviour. Musicae Scientiae, Special Issue, 2009/10, “Music

and Evolution”, 387–415.

[11] Boyd, R. & Richerson, P. J. (1985). Culture and the Evolutionary Process. Chicago,

IL: University of Chicago Press.

[12] Brown, S. (2000). The “musilanguage” model of music evolution. The Origins of

Music, 16, 271–300.

[13] Cardoso, A., Veale, T., & Wiggins, G. A. (2009). Converging on the divergent: The

history (and future) of the international joint workshops in computational creativity. AI

Magazine, 30 (3), 15–22.

[14] Cariani, P. (1991). Emergence and artificial life. In C. G. Langton, C. Taylor, J. D.

Farmer, & S. Rasmussen (Eds.), Artificial life II, volume XI of Santa Fe Institute Studies

in the Sciences of Complexity (pp. 775–798). Redwood City, CA: Addison-Wesley.

[15] Cattani, G. & Ferriani, S. (2008). A core/periphery perspective on individual creative

performance: Social networks and cinematic achievements in the hollywood film industry.

Organization Science, 19 (6), 824–844.

[16] Colton, S., Charnley, J., & Pease, A. (2011). Computational creativity theory: The

FACE and IDEA models. In Ventura, D., Gervás, P., Harrell, D. F., Maher, M. L.,

Pease, A., & Wiggins, G. (Eds.), Proceedings of the Second International Conference on

Computational Creativity.

22



[17] Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., Loreto,

V., Moat, S., Nadal, J.-P., Sanchez, A., et al. (2012). Manifesto of computational social

science. The European Physical Journal Special Topics, 214 (1), 325–346.

[18] Cross, I. & Woodruff, G. E. (2008). Music as a communicative medium. In R. Botha

& C. Knight (Eds.), The Prehistory of Language. OUP.

[19] Csikszentmihalyi, M. (1988). The nature of creativity. In R. J. Sternberg (Ed.),

Society, culture, and person: a systems view of creativity (pp. 325–339). Cambridge,

UK: Cambridge University Press.

[20] Csikszentmihalyi, M. (1999). Implications of a systems perspective for the study of

creativity. In R. J. Sternberg (Ed.), Handbook of Creativity (pp. 313–335). Cambridge,

UK: Cambridge University Press.

[21] Darwin, C. (1883). The Descent of Man and Selection in Relation to Sex. New York,

USA: Appleton and Co.

[22] Di Paolo, E., Noble, J., & Bullock, S. (2000). Simulation models as opaque thought

experiments. In A.Bedau, M., McCaskill, J. S., Packard, N. H., & Rasmussen, S. (Eds.),

Articial Life VII: Proceedings of the Seventh International Conference on Articial Life,

(pp. 497–506)., Cambridge, MA. MIT Press.

[23] Donald, M. (1991). Origins of the Modern Mind. Cambridge, MA: Harvard University

Press.

[24] Dunbar, R. (1994). Sociality amongst human and non-human animals. In T. Ingold

(Ed.), Companion Encyclopedia of Anthropology. Oxford, UK: Routledge.

[25] Edmonds, B. & Moss, S. (2005). From KISS to KIDS—an ‘anti-simplistic’ modelling

approach. In P. Davidsson, B. Logan, & K. Takadama (Eds.), Lecture Notes in Computer

23



Science, Multi-Agent and Multi-Agent-Based Simulation, volume 3415 (pp. 130–144).

Springer.

[26] Eigenfeldt, A. (2007). Drum circle: Intelligent agents in Max/MSP. In Proceedings of

the International Computer Music Conference, (pp. 9–12)., Copenhagen.

[27] Epstein, J. M. (1996). Growing artificial societies [electronic resource]: social science

from the bottom up. Brookings Institution Press.

[28] Feldman, D. H., Csikszentmihalyi, M., & Gardner, H. (1994). Changing the World:

A Framework for the Study of Creativity. Westport, CT: Praeger Publishers.

[29] Fisher, R. A. (1915). The evolution of sexual preference. Eugenics Review, 7, 184–192.

[30] Gabora, L. (1995). Meme and variations: A computer model of cultural evolution. In

L. Nadel & D. L. Stein (Eds.), 1993 Lectures in Complex Systems (pp. 471–486). Boston,

MA: Addison Wesley.

[31] Gabora, L. (2008). EVOC: A computer model of the evolution of culture. In Sloutsky,

V., Love, B., & McRae, K. (Eds.), 30th Annual Meeting of the Cognitive Science Society,

Washington, DC. Sheridan Publishing.

[32] Gabora, L. & Di Paola, S. (2012). How did humans become so creative? a com-

putational approach. In Maher, M. L., Hammond, K., Pease, A., Pérez y Pérez, R.,
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