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Abstract

Casual creator software lowers the technical barriers to cre-
ative expression. Although casual creation of visual art, mu-
sic, text and game levels is well established, few casual cre-
ators allow users to create entire games: despite many tools
that aim to make the process easier, development of a game
from start to finish still requires no small amount of tech-
nical ability. We are developing an iOS app called Gamika
which seeks to change this, mainly through the use of Al and
computational creativity techniques to remove some of the
technical and creative burden from the user. In this paper we
describe an initial step towards this: a Gamika component
that takes a level designed by the user, and tweaks its pa-
rameters to improve its playability. The Al techniques used
are straightforward: rule-based automated playtesting, ran-
dom search, and decision trees learning. While there is room
for improvement, as a proof of concept for this kind of mixed-
initiative creation, the system already shows great promise.

Introduction

Liapis, Yannakakis, and Togelius (2014) describe automated
game design as a “killer application” for Computational
Creativity research, as it combines many disparate creative
disciplines into a cohesive whole. Casual games, i.e. games
with relatively shallow learning curves and relatively sim-
ple game mechanics which demand only a relatively short
time investment for an engaging return, have broadened the
popularity of gaming as a pastime and have contributed to a
shift in the overall demographic of those who play games
regularly (Juul 2009). Similarly, casual creator software
(Compton and Mateas 2015), which emphasises the enjoy-
ment of creation over the necessity of completing a task, has
broadened the popularity of digital creation and begun to
blur the boundary between consumers and producers of cre-
ative artefacts. However, the creative act of game design is
not yet fully supported by casual creation on mobile devices.

A desire to further democratise game design has led us to
the building of the Gamika iOS application. We believe that
this is the first tool which enables entirely new casual games
(containing multiple levels with novel aesthetics, game me-
chanics and player interactions) to be designed entirely on
a mobile phone without programming. Gamika empowers
designers to experiment with new game mechanics and un-
tried gameplay. This naturally increases the requirement for

extensive tuning and playtesting of game levels, which can
be tedious. To combat this, we have endeavoured to make
tuning and testing of levels an entertaining experience, and
to automate parts of the process where appropriate. We have
sought to make this automation enjoyable, e.g. by allowing
the user to watch the tuning process as it happens, rather
than merely presenting them with a progress bar.

The work here represents a proof of concept for on-
device casual game creation, including the invention of new
game mechanics, without programming. Our contribution
is the whole pipeline and the Al functionality embedded in
Gamika which supports casual co-creation, rather than a fo-
cus on studying and optimising one particular aspect.

In this paper we discuss our approach to provide support
for level design through automated parameter adjustment.
We begin by surveying existing mobile apps which allow
users to create games or game content. We then describe the
Gamika system, and present as a running example a partic-
ular game that has been designed within the app by one of
the present authors. The design of new levels for this game
presented us with a challenge, as levels often require fine-
tuning of parameters to yield a satisfying play experience.
We present the results of our initial experimentation into
automated tweaking of parameters, using random search,
learned classifiers (decision trees) and a simple automated
playtester. We also discuss the nature of the search space,
and the difficulties we have encountered in trying to apply
more intelligent search methods. We conclude by looking
forwards to our goals and plans for the Gamika project.

Game creation on mobile devices

The term casual creator (Compton and Mateas 2015) de-
scribes a piece of software which allows users to quickly and
easily create artefacts such as musical compositions, filtered
digital photos, abstract artworks, stories, and poems. Some
games include features such as character creators or level
editors which could be classed as casual creators. However,
there is a lack of such software that gives aspiring game de-
signers fine-grained control over all aspects of a game, par-
ticularly the underlying rules and mechanics of the game.
There are many software packages for novice game de-
signers to experiment and learn the craft, such as Scratch
(scratch.mit.edu), Stencyl (stencyl.com) and AgentCubes
(agentcubesonline.com).  They can then move on to



professional-grade tools such as GameMaker: Studio
(yoyogames.com), Unity (unity3d.com) or Unreal (un-
realengine.com). Many of these allow the designer to deploy
their game to mobile devices, however all require that the de-
velopment takes place on a desktop or laptop computer. Also
all require programming (using visual programming envi-
ronments and/or text-based programming languages) for all
but the most trivial games. This significantly raises the bar-
rier to entry for non-technical users. Practically, all casual
games on the market today are made by professionals or
skilled hobbyists, and are created using these tools.

Apps which enable creation of games or game assets on
the mobile device itself fall into three main categories:

e Apps which require programming skills. Many, such
as Scratch Jr (scratchjr.org) and HopScotch (gethop-
scotch.com), are primarily tools for teaching program-
ming skills to children, with game creation being a vehi-
cle rather than an end in itself. These apps give the user a
wide range of creative expression, but assume a degree of
technical proficiency (or a desire to learn technical skills).

e Apps which enable only skinning existing game tem-
plates, i.e. customisation of a game’s visual appearance
and audio, but little or no ability to change the gameplay.
Examples here include Coda Game (codarica.com) and
Playr (playr.us) which offer some degree of creative free-
dom, but only with respect to a game’s aesthetic qualities.

e Apps which enable the authoring of levels for an exist-
ing game. Examples include Createrria 2 (incuvo.com)
and Sketch Nation (sketchnation.com). Minecraft: Pocket
Edition (minecraft.net) can also be included in this cate-
gory, with advanced features such as redstone circuitry
blurring the lines between level design and programming.
Such apps empower creative expression, but limited to the
characters, rules and game worlds provided.

Gamika is our attempt to fill a gap in the market: a casual
creator app which empowers users to create entire games on
their mobile device, in particular enabling the invention of
entirely new game mechanics. One of our ultimate aims is
for Gamika to be able to automatically generate entire ca-
sual games, so that users can delegate as much (or as little)
of the creative responsibility as they like. Several authors
(Lim and Harrell 2014; Khalifi and Fayek 2015; Nielsen et
al. 2015) have studied automatic generation of game lev-
els using general-purpose game description languages such
as VGDL and PuzzleScript. Nelson and Mateas (2008) for-
mally modularise recombinable game mechanics. These al-
low users to define novel game variants and get automated
feedback on properties such as playability. The Game-O-
Matic project (Treanor et al. 2012) enables users to gen-
erate short games by just defining relationships. Zook and
Riedl (2014) use planning techniques to generate new game
mechanics. ANGELINA (Cook, Colton, and Gow 2016) is
perhaps the closest to a true whole-game generation system
that exists currently, but there is still a long way to go before
automated systems reach a level where they can be taken
seriously as game designers in their own right.

Gamika

Gamika is an i0OS application developed in the Swift pro-
gramming language and using Apple’s SpriteKit 2D game
development library. SpriteKit includes a physics engine
based on Box2D, which forms the basis of game object in-
teractions in Gamika. A game in Gamika is a list of levels,
each of which comprises: 284 numerical parameter settings
which control several aspects of gameplay; an optional vec-
tor graphic to be used as a controller; and an optional text
string explaining the rules of the game to the player. By
analysing classic arcade games and by attempting to design
novel games within the app, we have grown parameter set
organically until satisfied that they admit game levels that
are sufficiently diverse, interesting and engaging.

A game level features objects of several classes, with each
object corresponding to a rigid-body in the physics simula-
tion. The parameters that define a game level are split into
several categories:

e Image. The level can optionally use an abstract art
image generated by the ELVIRA evolutionary art sys-
tem (Colton, Cook, and Raad 2011) as an in-game object
or as a background image.

e Look. The background image can be changed, as can the
size, shape, colour and sprite images for the game objects.

e Lights. Spotlight effects can optionally be added to the
game, and the appearance of game objects under lighting
(e.g. normal mapping) can be adjusted.

e Spawning. Objects of each class can be spawned at a
given rate, from a given position or range of positions,
optionally with an upper limit for the number of objects
of each class allowed on screen at one time.

e Movement. The physical properties of the objects, such
as restitution, mass and linear damping, can be changed.
Force-fields can be added, to attract or repel objects with
respect to a particular point, or apply a force in a given
direction. Joints such as pins, springs and sliders can be
added to objects.

e Collisions. For each pair of object class, several actions
can occur when objects collide. For example they may
bounce, pass through, stick, be destroyed, or change class.
When objects stick together they form clusters; it is possi-
ble to set a maximum cluster size so that larger clusters are
destroyed. Walls can be added to the edges of the screen.

e Control. The player’s taps and swipes can cause game
objects to move, rotate, change direction, stick in place,
spawn, be destroyed, or be attracted or repelled.

e Counters. The designer can define counters (e.g. score,
health, lives) by which the player’s progress is measured.
Counters can be incremented or decremented by in-game
events such as collisions, spawning or destruction of ob-
jects, objects leaving the screen, clusters being formed,
and objects entering scoring regions.

e Endings. The game can optionally be set to end after
a certain time limit, or when a certain counter value is
reached. What constitutes a win or loss, and high scores
are recorded can also be specified.



Figure 1: Screenshots of Let It Snow levels 1 to 6.

Gamika maps a space of casual games to a space of nu-
merical parameters. Other attempts to map out a space
of games for manual or automatic exploration include
VGDL (Schaul 2013) and PuzzleScript (puzzlescript.net).
These systems map games to hierarchical code structures,
whereas Gamika uses a space of numerical vectors. Sim-
ilar representations have also been used, for example, by
(LeBaron, Mitchell, and Ventura 2015) for tile properties in
puzzle games. In Gamika, any sequence of 284 numbers in
the correct ranges is a syntactically valid (but not necessarily
playable) game level, making the representation amenable to
simple local search and evolutionary methods.

Gamika is also set apart by its use of simulated physics.
VGDL and PuzzleScript define explicit movement rules for
in-game objects: “when the player presses the A key, move
the player sprite one space to the left, unless there is a wall
in the way”. Gamika specifies only the physical properties
of the objects and the environment: “when the player taps
the screen, add a force that attracts the controller object to-
wards the tap position”. This level of indirection changes
how the space is navigated: designing a game in Gamika is
less like an exercise in software engineering, and more like
a random walk whose course can be changed completely by
a serendipitous discovery.

Let It Snow

This paper focusses on one particular game, titled Let It
Snow, designed within Gamika by one of the present au-
thors (Colton). Figure 1 shows screenshots of six lev-
els. Each level features a drawn controller formed of black
lines/shapes. The abstract art image in the background is for
decoration only. White and blue balls are spawned at the top

of the screen, at a rate of 3 each per second, and fall towards
the bottom, bouncing off the drawn controllers as they settle.
If there are 20 balls of a single colour on screen, no new balls
of that colour are spawned until the number drops below 20.
(The values of 3 balls spawned per second and maximum 20
balls on screen are parameters which may vary from level to
level and may differ for blue and white balls within the same
level.) Balls bounce off balls of the other colour and off the
controller. Balls of the same colour stick together. When a
cluster forms of four or more balls of the same colour, all
balls in the cluster explode. The player gains one point for
each white ball that explodes, and loses one point for each
blue that explodes. The controller can be “jiggled” slightly
by dragging on the screen, but the player’s main interaction
with the game is to tap blue balls. Tapping a blue ball causes
it to explode; tapping a white ball does nothing. Exploding a
blue ball loses one point, so should be done sparingly, how-
ever it is sometimes necessary in order to clear the way for
a cluster of whites to spawn and thus give a net gain. The
game ends when the player reaches a predetermined score
threshold (either 50 or 100 points, depending on the level).
There is no time limit, but the player’s position on the high
score table is determined by how quickly they reach the tar-
get score, and achieving lower than a certain time allows the
user to advance to the next level.

Let It Snow is a challenging, fast-moving game, rather
more dependent on quick thinking and reactions than many
casual colour-matching games. Novice players tend to fail
to get control of the game and scores can plummet. Some-
times the arrangement of the balls means that no new balls
are spawned but no clusters form, hence the game comes to a
halt. In these quiescent moments the game takes on a puzzle
element, as the player has time to ponder their next move.
The designer found that a good playing strategy is to con-
centrate on getting these quiescent moments, then carefully
keeping control of the situation through selective destroy-
ing of blue balls. For example in level 1, a skilful player
will get blues locked in singletons, pairs and triplets at the
bottom of the five columns. Then only white balls spawn
and land on those exposed above the locked blues in such
a way that they continuously form groups of four and thus
allow more whites to spawn. At this stage the game has the
look of snowing (hence the game’s name), and players can
sit back and watch the score increase rapidly. However, the
player may occasionally need to step in if the whites fall in
an unlucky arrangement and fail to form a cluster, and an ex-
pert player can often be more proactive to try and bring their
time down further. An expert player can generally reach 100
points on level 1 within 60 to 90 seconds, with novices usu-
ally taking three minutes or more.

An automated player for Let It Snow

Gamika provides a configurable automated playtester to aid
designers in testing and fine-tuning game levels. Given
that Gamika allows a wide variety of games to be cre-
ated, it initially seems attractive to playtest them using a
general-purpose approach such as Monte Carlo Tree Search
(MCTS) (Browne et al. 2012). MCTS has been shown
to perform well in the General Video Game AI Competi-



tions (Perez et al. 2015) and for physics-based games (Perez
et al. 2013). Game tree search (though not MCTS) is
used as a playtester by the Mechanic Miner component of
ANGELINA (Cook et al. 2013).

However, when designing new levels for an existing
game, the generality of MCTS can be its downfall: we prob-
ably want to reject levels where the winning strategy devi-
ates too far from that for the rest of the game, but it is diffi-
cult to prevent MCTS from automatically adjusting its strat-
egy to the level at hand. The measure of fitness for a new
level is not whether it is playable in general, but whether
it is playable with respect to some predefined strategy. In
addition, one of our design goals is for the playtester’s de-
cision making process to be transparent to the user, so that
designing the strategies used and watching them in action
becomes part of the enjoyment of using the app. For these
reasons, we opted for a simple rule-based player whose rules
are parameterised and exposed through the user interface.

The player “ticks” 15 times per second, and on each tick
analyses the current state of the game. Certain patterns of
balls trigger certain actions. The player taps a blue ball that
is about to form a cluster of 4 or more, or a blue ball that is
blocking a cluster of 4 or more whites from forming. If the
game has become quiescent (with no ball having a non-zero
velocity), it taps a blue ball at random. If a period of time
has passed without any whites being able to spawn, it jiggles
the controller in a small random direction. These rules were
informed by the designer’s examination of his own strategy.
We have found this playtester to play at a level competitive
with intermediate to expert human players, albeit not always
in a human-like way. For example the automated player taps
the blue ball at the last possible moment to prevent a cluster
from forming, whereas a human player would anticipate the
situation further in advance and tap the blue ball earlier.

Search-assisted level tweaking

In Let It Snow, the main component of a level is the drawn
controller. However many controller designs fail to yield
a playable level, especially if they are significantly differ-
ent from the vertical column design of level 1. It is often
necessary to tune the parameters of the level to improve its
playability, and this (in a cycle of tweaking and playtesting)
can often be the most time-consuming part of level design.
Indeed, this precise situation arose when the designer of Let
It Snow came to extend the game past the initial level.

Our ultimate aim is to perform the tweaking automati-
cally: the designer draws a controller, and then the app takes
care of tweaking the level. The modus operandus we antic-
ipate for multi-level game design is as follows: the user de-
signs the core mechanics of the game, and in tandem designs
an initial level (or perhaps more than one). Based on this ini-
tial level, the user designs an automated player by choosing
from a number of preset tactics. The app performs some
initial analysis on the game. The user then designs further
levels, perhaps by drawing a controller or positioning ob-
jects. For each new level, the app performs a search, guided
by its initial analysis, to refine the game parameters. Ulti-
mately, the user is the curator for the refined levels: they may
be presented with several alternative refinements to choose

from, or they may choose to fine-tune a generated level by
hand. This process should run entirely on the user’s mobile
device, either while the user waits, or overnight while the
device would normally be idle and connected to its charger.

“Fail-fast” random search

A human designer will not waste much time playtesting an
obviously bad level: often only a few seconds are needed
to see that the current parameters are no good. We seek to
emulate this fail-fast approach to playtesting in Gamika’s
search mechanism. To this end, we define a test set, based
on a single automated playtest, that indicate a level is “bad”:

1. The score reaches —30 or less at any point;
2. The level is won in less than 20 seconds;

3. The time reaches 80 seconds without a win;
4

. The playthrough featured fewer than two quiescent mo-
ments (defined as a continuous stretch of time where no
ball has a non-zero velocity);

5. The player tapped more than 3.5 times per second on av-
erage; or

6. The average distance between consecutive taps was more
than 200 pixels.

These tests can be edited by the designer within the app.

For Let It Snow, the designer chose a set of eight parame-
ters to adjust: ball size, fall speed, spawning rate and number
allowed on screen, each for both blue and white balls. These
parameters have the largest effect on gameplay without devi-
ating too far from the core game mechanics. The parameters
are allowed to vary within £30% of their initial values.

As a baseline, we implemented an uninformed random
search. Each frial begins by choosing values for the eight
parameters from a uniform random distribution. The auto-
playtester then plays the game a maximum of three times.
The games are played at 4 times normal speed and visualised
on screen. If at any stage the level fails one of the tests listed
above, the trial ends immediately and a new trial begins. If
all three playtests end without failure, the search ends and
the level is presented to the user.

Decision trees

As discussed below, uninformed random search is slow. As
a first step towards a more informed search, we trained clas-
sifiers to recognise those games that are likely to fail the
first playthrough (due to failing one of the six tests above).
This “two-tiered” approach, of statically filtering candidate
levels before dynamically playtesting, is similar to that of
(Williams-King et al. 2012). To train the classifiers, for
each of of the six levels, we ran the uninformed random
search, recorded the parameter settings for each trial, and
whether the trial succeeded or failed the first playtest. Test-
ing whether we could train a classifier to cut down search for
a set of fine-tuned parameters for level 2, we split the data
into two sets. The first data set comprised 249 instances for
success in tuning level 2, and we sampled 249 failure in-
stances at random. The second data set comprised instances
for success in tuning any of levels 1, 3, 4, 5 or 6 (i.e., with
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Figure 2: Decision tree trained on Let It Snow level 2. A
leaf node labelled (a/b) corresponds to a correctly classified
instances and b incorrectly classified instances.
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no knowledge of level 2), and we sampled 249 successes
and 249 failures for this data set. These were used to gen-
erate two decision trees using the C4.5 algorithm (Quinlan
1993), as implemented by the J48 classifier in Weka version
3.8.0 (Hall et al. 2009).

The generated trees are shown in Figures 2 and 3.
The classification accuracies, according to 10-fold cross-
validation, are 82.46% and 83.06% respectively. There are
some similarities between the trees, both emphasise the im-
portance of the parameters for maximum number of balls on-
screen, and impose similar (though not identical) constraints
on them. The level number was included in the training data
for Figure 3, but has relatively little influence on the deci-
sion tree, with only one node testing it (in that case, testing
whether the level number is 1).

Rather than taking the traditional rejection sampling ap-
proach, we use these decision trees “in reverse” to gener-
ate level instances, as follows: First, choose a “success”
leaf node in the tree using roulette wheel sampling, with the
probability of choosing a leaf node proportional to its num-
ber of correctly classified instances (the first number in the
leaf nodes in Figures 2 and 3). Then traverse the tree from
this leaf node to the root, recording the constraints in the
edges along the way. These constraints give a narrowed set
of ranges for the parameters; sample uniformly within these
ranges. The sampled instance is guaranteed to be classified
as a success by the decision tree.

Results

We compared three random search variants: one unin-
formed, one using the decision tree trained on Let It Snow
level 2 (Figure 2) and one using the decision tree trained on
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Figure 3: Decision tree trained on Let It Snow levels 1, 3, 4,
5 and 6. See caption for Figure 2.

the other five levels (Figure 3). In each case the search was
seeking to adjust the parameters for Let It Snow level 2. We
ran 18 instances of each search variant for a maximum of 24
hours. The instances were run in parallel on a desktop PC,
but it is also possible to run a single instance on a mobile
device. Each instance ended once it had found a level that
passed three playtests as described above.

Table 1 shows the wall-clock time and number of trials
taken for the search instances to succeed. For uninformed
search, most instances took several hours to complete, and
two of the 18 failed to complete within 24 hours. In con-
trast, for the decision tree trained on level 2, one-third of
the instances completed in less than an hour, and only one
took longer than 9 hours. The decision tree trained on the
other levels was significantly faster than uninformed search
but slower than the level-specific search.

Table 2 shows the number and proportion of trials which
fail on the first, second and third playtest, and those which
succeed. For the uninformed search, the vast majority of
trials end in rejection after the first play, with only a handful
making it through to the third play and either succeeding or
failing there. The searches informed by the decision trees
still reject a large proportion of games on the first play, but
significantly fewer than the uninformed search.

Figure 4 (a) shows the distribution of playtest durations
(measured using in-game seconds) for the three searches.
The searches using decision trees have proportionally more
trials reaching 80 seconds, and proportionally fewer rejected
in less than 20 seconds. Thus, the mean playtest duration
is shorter for the uninformed search, thus, it can complete
more playtests in less time, however this is not necessarily a
benefit as those quick tests are generally failures.

Figure 4 (b) shows the distribution of trial failure reasons
in the three searches. Compared to uninformed search, the
searches using decision trees reject far fewer levels based on
the score reaching —30 or the game lasting less than 20 sec-
onds. This suggests that the decision trees are particularly
good at rejecting levels which would fail for this reason. In



Uninformed random search

Trained on this level

Trained on other levels

@ |

Occurrences
Occurrences

00 10 20 30 40 50 60

% 10 20 30

Game time (in-game seconds)

40

Game time (in-game seconds)

8000

6000

Occurrences

4000

00 10 20 30 40 50 60 90

50 60 70 80

Game time (in-game seconds)

(b)

7000
6000

5000

4000

Occurrences
Occurrences

10000 3000

2000
5000

1000

ol
Score < -30 time <20 time > 80 quiescence tap rate tap distance
Failure reason

0
Score < -30 time < 20 time > 80 quiescence tap rate tap distance
Failure reason

8000

7000

6000

5000

4000

Occurrences

3000

2000

1000

[
Score < -30 time < 20 time > 80 quiescence tap rate tap distance
Failure reason

Figure 4: Distribution of (a) play times and (b) trial failure reasons for the three random search variants.

Uninformed Decision tree trained on
random search this level | other levels
Time Trials Time Trials Time Trials

0:36:39 243 00:02:24 13 00:08:59 42
1:19:58 478 00:11:29 46 00:47:03 209
1:23:50 489 00:16:19 70 00:52:53 231
4:31:31 1615 00:24:09 121 01:40:39 452
5:09:52 1884 || 00:24:26 116 01:46:36 458
7:43:46 2786 || 00:30:45 143 02:39:09 715
8:12:19 2977 01:06:32 272 02:41:26 718
9:26:04 3481 01:31:03 399 03:30:34 935
10:23:26 | 3816 | 02:35:13 693 03:42:38 963
10:36:10 | 3777 02:36:01 690 04:52:19 | 1272
10:40:37 | 3884 || 03:01:42 783 06:22:28 | 1680
12:08:55 | 4407 03:54:08 | 1049 07:16:06 | 1890
13:23:55 | 4895 04:55:34 | 1306 || 08:11:59 | 2184
15:05:55 | 5604 || 06:22:43 | 1681 08:45:30 | 2296
20:36:11 | 7467 07:04:56 | 1856 12:01:31 | 3124
20:38:31 | 7845 08:22:12 | 2207 12:02:42 | 3143
— — 08:58:33 | 2362 12:29:54 | 3309
— — 16:28:38 | 4330 12:32:13 | 3239

Table 1: Wall-clock times (in hh:mm:ss) and number of tri-
als for 18 instances of each random search variant to find a
game level that passes all three playtests within 24 hours.

all cases, hardly any games are rejected on the basis of tap
distance, and none at all on tap rate. This suggests that these
tests, which the designer felt were important measures of the
difficulty of a level, were in fact not so important. In real-
world usage, such information can influence the designer’s
choice of tests for future uses of the search functionality.
When trained on a specific level, the search finds a suit-
able level in a median time of 2 hours 30 minutes, however,
simply collecting enough data to train the classifier can take
longer than this. The median time for a classifier trained

Number | Proportion | Proportion
Outcome of trials | of all trials | for this test
Uninformed random search
Fail after 1 play 55225 99.242% 99.242%
Fail after 2 plays 366 0.658% 86.730%
Fail after 3 plays 40 0.072% 71.429%
Success 16 0.029% 28.571%
Decision tree trained on this level
Fail after 1 play 16331 95.019% 95.019%
Fail after 2 plays 762 4.434% 89.019%
Fail after 3 plays 76 0.442% 80.851%
Success 18 0.105% 19.149%
Decision tree trained on other levels

Fail after 1 play 25072 96.713% 96.713%
Fail after 2 plays 768 2.963% 90.141%
Fail after 3 plays 66 0.255% 78.571%
Success 18 0.069% 21.429%

Table 2: Outcomes of trials for each random search variant.

on the game but not on the specific level is around 4 hours.
When designing many levels for the same game, or a new
level for an existing game where the classifier has already
been trained, this is likely to be the best tradeoff.

To assess the results of the search methods, the designer
performed a curation analysis (Colton and Wiggins 2012)
on the generated games. For each search variant, he played
the first five generated levels in the order in which they were
produced (as listed in Table 1). Each was played 10 times,
after which the designer decided whether or not the level was
good enough to be added to the canonical set of Let It Snow
levels, recording the reasons for his decision. For the unin-
formed search, the second level was the first to be deemed
good enough, with three of the five passing the test. For the
search using the decision tree trained on level 2, the second



level was deemed good enough and four of five passed. For
the search trained on the other levels, the first was deemed
good enough and three of five passed. The purpose of this
analysis is not to compare the three search variants against
each other, as the sample size is too small to draw any mean-
ingful conclusions. However the analysis does show that all
three variants produce a reasonable proportion of playable
levels, so the user can reasonably expect to obtain a satisfac-
tory result after two or three attempts.

Of the levels that the designer rejected, the main failure
was that the level was too easy to get into a snowing state,
and too passive thereafter. Of the games rated as very good
by the designer, some had the feel of level 1 (which the
designer had tuned by hand to be enjoyable), whereas oth-
ers placed more emphasis on the game’s slow-moving puz-
zle elements. The levels generated by the informed search
were noticeably distinct from each other, with no noticeable
narrowing in the space of games produced by the informed
searches compared to the uninformed search.
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Figure 5: Analysis of the maximum number of blue balls pa-
rameter plotted for all six Let It Snow levels independently.

Understanding and traversing the game space

Random search is a baseline, so it should be possible to
do better. Playtesting time is dominating the computational
overhead of almost any search method, so there is scope
to use more sophisticated techniques than random search
whilst staying within the confines of the mobile device.
Many games in Gamika have a stochastic element. In Let
It Snow, balls are always spawned at the top of the screen
but their x coordinate is chosen at random. Furthermore, the
physics simulation involving dozens of objects bouncing off
each other exhibits chaotic phenomena such as sensitive de-
pendence on initial conditions. This makes any fitness mea-
sure based on playtesting highly noisy: it is not uncommon
for our automated player’s time to complete a given level
to vary by 20 seconds or even more. This causes problems
when trying to apply search methods such as hillclimbing:
either the search is led astray by noise in the fitness land-

scape, or the need to perform several trials and take an aver-
age negates the speed benefit.
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Figure 6: Analysis of all eight parameters.Each graphs
shows a parameter sweep averaged over all six levels.

To better understand the effect of the eight chosen pa-
rameters on the playability of game levels, we performed
a parameter sweep. Each parameter in turn was varied from
—30% to +30% of its initial value in steps of 10%, with
the other seven parameters fixed at their original value. For
each parameter setting, we ran 10 games with the automated
playtester and recorded the final score, the game duration,
and the number of quiescent moments.

Figure 5 shows the results for each of the six levels for
the “maximum number of blues” parameter. Some com-
monalities are apparent, for example increasing the number
of blues results in a roughly sigmoidal decrease in score.
However there are also noticeable differences, particularly
in quiescence. A similar story is presented when examining
the individual levels’ graphs for the other seven parameters
(not presented here). In contrast to our initial assumption
that all parameters are somewhat level independent, our re-
sults suggest that the effect of some parameters on playabil-
ity is indeed level dependent. Figure 6 shows results aver-
aged across all six levels for each of the eight parameters.
Graphs such as these could be displayed in Gamika to allow
the designer to visualise trends in parameter changes. In-
deed they have already proven useful to the designer of Let
It Snow, confirming some of his intuitions regarding the pa-
rameter space and forcing him to reconsider others. A full
parameter sweep takes around 2 hours to compute on a mo-
bile device, however this could be parallelised as a cloud
service to provide faster feedback.



Conclusion

Our aim with the Gamika project is to provide a tool with
which non-technical users can create novel, interesting and
engaging casual games, beyond mere user-generated con-
tent or visual customisation, entirely on their smartphone or
tablet. Game design is challenging, both technically and cre-
atively, so we believe that the key to achieving this aim is to
use computational creativity to support the user: providing
guidance, automation, and ultimately co-creation. This pa-
per describes an approach using rule-base automated play,
decision tree learning and statistical analysis to support the
designer in creating and adjusting new games and levels.

As a proof of concept, we believe the current version of
Gamika shows promise. However there are several areas in
which it can be improved:

e Further expanding the space of designable games, for ex-
ample allowing configurable non-player characters.

e Improving the user interface, to ensure that the user is not
bewildered by the array of parameters available. Compton
and Mateas’s (2015) design patterns are a valuable source
of guidance here, as is the literature on HCI in general. In
particular we plan to emphasise the more tactile aspects,
such as freehand drawing and drag-and-drop interfaces.

e Improving the automated playtester, to allow it to play a
wider variety of games, and possibly to allow it to learn
by observing the user play. Here the emphasis is to ensure
that designing the playtester is as easy and enjoyable as
designing the game.

e Implementing better search techniques such as hillclimb-
ing, evolutionary and constraint solving approaches. The
search methods presented in this paper are encouraging as
a baseline, but too slow to run on a mobile device.

Lovell and Fahey (2012) write of the Starbucks test for
casual games: the ability to give the player a meaningful
experience in the time it takes the barista to make their cof-
fee. With Gamika we hope to achieve something similar but
more ambitious: to allow users to make meaningful progress
towards designing an entirely new game or level in the space
of a few minutes. The Starbucks test is one of the factors
which has widened the demographic of people who play
games on a regular basis; we hope that Gamika will simi-
larly bring the joy of game design to a wider audience.
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