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Abstract. Multiple devices, both hardware and software, may come 
and go at any time in a given room.  Software controlling the 
behaviour of these devices must be able to adapt to encompass new 
devices or the removal of existing devices.  This paper presents a 
model for curious, supervised learning agents that address the issue of 
adaptability at a behavioural level in an intelligent room.  Curious, 
supervised learning agents comprise a curiosity module and a 
supervised learning algorithm.  The curiosity module identifies 
interesting devices on which to focus the agent’s learning.  The 
supervised learning component realises behaviours by observing, 
modelling and mimicking human actions.  Our framework is 
demonstrated in a virtual meeting room in Second Life.  We show 
that the curious learning agent can adapt its behaviour to identify new 
learning goals in response to new devices and activities.  
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1. Introduction 

Adaptability is recognised as a key concern when developing intelligent 
environments.  In his vision for the computer in the twenty-first century, 
Weiser (1991) describes how multiple devices, both hardware and software, 
may come and go at any time in a given room.  Computational processes 
controlling these devices must be able to adapt their behaviour to encompass 
new devices or the removal of existing devices.  This paper presents a model 
for curious, supervised learning (CSL) agents that address the issue of 
adaptability at a behavioural level.   

Previously, system architectures for intelligent rooms have had two main 
levels of focus: middleware architectures and behavioural architectures.  
Middleware architectures have considered adaptability in terms of the need 
for reconfigurable environments at a hardware level.  These approaches 
support resource management, communication between devices and dynamic 
reconfiguration.  Adaptability is facilitated via components such as real-time 
interaction modules (Brooks et al., 1997), Metaglue modules that support 
modification of a running system (Coen et al., 1999; Phillips, 1999), Gaia 
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presence services (Roman et al., 2002) and ad hoc networking (BLIP 
Systems, 2007). However, while this level of adaptability is necessary for 
achieving adaptive behaviour in intelligent environments, it is not sufficient 
alone.  Adaptability at the behavioural level is required for the actions and 
responses of an intelligent room to react to the addition or removal of devices, 
and the changing behaviour of people in the room.   

Existing approaches to behavioural architectures for intelligent rooms have 
demonstrated success as techniques for allowing intelligent environments to 
adapt to changing human activities (Brdiczka et al., 2005; Mozer, 1998).  In 
contrast, the issue of achieving autonomous, adaptive behaviour when the 
hardware devices in the room change, has not been widely considered.  
Previous behavioural architectures have tended to assume a fixed set of 
devices to be monitored or controlled.  Reprogramming or addition of 
applications or agents is required to respond to new devices at the behavioural 
level.  Responding to new devices without reprogramming or otherwise 
modifying behavioural architectures requires new approaches that can explore 
the potential of a new system configuration and identify appropriate new 
behaviours.  

This paper presents a CSL agent model as a behavioural architecture that 
can adapt the responses of an intelligent room to the addition or removal of 
devices from the space and changes in the activities in the room.  This model 
is designed to draw on the potential of adaptive middleware technologies – 
such as ad hoc networking or Metaglue – but extend those technologies with 
an adaptive behavioural level.     

Our CSL agent is demonstrated in a virtual meeting room in Second Life, 
which is modelled on a real world university meeting room.  We show that 
the curious learning agent can identify new learning goals in response to new 
devices and human actions and use these goals to focus the agent to learn new 
behaviours.   

2. A Behavioural Architecture using Curiosity and Supervised Learning 

CSL agents comprise a curiosity module and a supervised learning 
algorithm, as shown in Figure 1.  The role of the curiosity module is 
twofold.  First, the curiosity module identifies interesting tasks on which to 
focus the agent’s learning.  Secondly, the curiosity module determines when 
learned tasks should be acted upon.  The curiosity module functions as a 
filter to focus attention on relevant data.   

Relevant data selected by the curiosity module is input to the learning and 
activation processes of the supervised learning algorithm.  The learning 
process constructs behaviours as sequences of actions by observing, 
modelling and mimicking curious human actions.  The activation process 
executes these behaviours in the environment.   

2.1. MODELLING CURIOUS SUPERVISED LEARNING  

Standard supervised learning is defined by a set S of states describing the 
agent’s environment and a set A of actions that the agent can perform.  A 
task to be learned is defined by a set X of examples.  The agent learns a 
policy • mapping states to actions to perform the task.  This formulation 
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assumes a set of examples for a small number of tasks (often just one task).  
In intelligent environments, states describe the status of devices, such as 
whether a light is on or the current temperature.  Actions are ways that this 
state can be changed.  However, examples typically represent multiple tasks 
as multiple humans use multiple different devices at different times.  In CSL, 
the curiosity module acts as a filter for states and examples, to focus learning 
and action on certain tasks.  We denote the set of all states, actions and 
examples experienced by the agent as the experience trajectory Y: 

Y(t) = {S(1), X(1), A(1), S(2), X(2), A(2), … S(t), X(t), A(t),    } (1) 

Curiosity is modelled as a function of the agent’s experiences at time t: 
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Figure 1. Model for a curious supervised learning agent.   

2.2. META-SENSORS AND META-EFFECTORS 

Maher et al. (2006) proposed the use of context-free grammars (CFGs) to 
model dynamic state and action spaces in intelligent environments.  Here we 
describe two specific CFGs for representing the states and actions of an 
intelligent room to an agent in terms of the devices Di that comprise its 
sensors and effectors:  
S(t)     à <sensations> 
<sensations>    à <DiSensations><sensations>|• 
<DiSensations>   à <sj><DiSensations> | • 
<sj>     à <number> | <string> 
<number>    à ... 
<string>    à ... 
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A(t)     à <actions> 
<actions>    à <DiActions><actions> | • 
<DiActions>    à <Aj><DiActions> | • 
<Aj>     à ... 

 

(4) 

 
We assume that this adaptable CFG representation of the changing state and 
action spaces of the agent is constructed by middleware resource management 
tools.  The agent itself uses meta-sensors, or ‘sensors of sensors’ to monitor 
the changing state and action space.  Likewise, the agent uses meta-effectors 
to communicate action commands to the middleware layer.  In this way, the 
agent has a fixed set of sensors and effectors but can monitor and affect a 
dynamic set of devices.   

3. Experiments in an Adaptive Virtual Room 

We experimented with CSL agents in a virtual meeting room in Second Life 
(www.secondlife.com: Oct 2007), shown in Figure 2.  This room is modelled 
on a real world meeting room in a university.  The physical room can be 
used for seminars, video conferences, staff meetings or project work by 
students.  The virtual room is used for tutorial exercises and research.   
 

 
Figure 2. A virtual meeting room in Second Life. (a) From above. (b) From the main 

entrance.  Sensors monitor lights, avatar presence, seats and the SmartBoard.  Effectors 
can modify lights and the SmartBoard and its applications.    

3.1. SENSORS AND EFFECTORS 

A number of working devices have been programmed for the virtual meeting 
room using the Linden Scripting Languages, including a virtual ad hoc 
network based on the idea of a BLIP System (2007), lighting, floor sensors, a 
virtual SMART Board (http://www2.smarttech.com/st/en-
US/Products/SMART+Boards/: Oct 2007) and smart chairs.   

The virtual BLIP System comprises a BLIP Server (on a virtual PC) and 
two BLIP Nodes. BLIP Nodes detect other scripted devices in the room and 
communicate their Second Life identifier (UUID) to the BLIP Server. The 
BLIP Server maintains a list of all devices in the room. The BLIP Server PC 
also hosts the CSL agent.  In our experiments, the virtual BLIP System acts 
as an adaptive middleware layer.  We assume some custom BLIP 
application software to create and communicate the CFG representation.     

The virtual room also has a lighting system comprising one switch that 
activates seven ceiling lights.  The switch and lights, once detected by a 

(a) (b) 
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BLIP Node, can communicate with the BLIP Server.  The switch 
communicates an example of human behaviour each time it is touched.  The 
lights communicate their current state each time it changes to on or off.   

A single floor sensor, located in the middle of the virtual room, has a 9 
metre radius for detecting avatars.  This extends to the walls of the room but 
leaves un-monitored areas near the doors.  This allows the sensor to monitor 
the transition as an avatar enters the room.  The sensor communicates the 
names of detected avatars to the BLIP Server each second.    

A virtual SMART Board simulates running Skype for video conferencing.  
The SMART Board turns on and activates Skype when it is touched and 
sends its state and an example to the BLIP Server.  Three smart chairs are 
arranged in front of the SMART Board.  The smart chairs can sense when 
an avatar sits on them, or stands up and communicate this state to the BLIP 
Server1.    

In CFG form, an example state of the room when the lights are on is:   
<1light1><1light2><1light3><1light4><1light5><1light6><1light7> 

If the avatar, Sahi Kipling, enters the room, this becomes: 
<1light1><1light2><1light3><1light4><1light5><1light6><1light7><1SahiKipling> 

3.2. THE CURIOUS ROOM AGENT 

For the experiments in this paper, we used a simplified version of Stanley’s 
(1976) model of habituation to represent curiosity for learning tasks, a model 
of competence based on learning error for curiosity towards acting, and table-
based supervised learning using associations (Steels, 1996) for the learning 
module.  Table 1 shows the parameters of these models and the values used 
in our experiments.   

TABLE 1. Agent parameters and their values. 
Parameter Value Description 

HABITUATION_RATE 0.5 Rate of novelty decrease 
NOVELTY_THRESHOLD 0.5 Threshold for learning 
COMPETENCE_THRESHOLD 0.8 Threshold for action 
LEARNING_RATE 0.5 Rate of supervised learning 

3.3. RESULTS AND DISCUSSION 

Three preliminary experiments were conducted as a proof-of-concept for CSL 
agents.  The results are discussed here, along with the implications for 
further development of the system.     

The first experiment, illustrated in Figure 3, demonstrates the ability of a 
CSL agent to learn a simple behaviour.  An avatar, Sahi Kipling, walks into 
the room and turns on the light.  Sahi then walks to the door, turns off the 
light and walks out of the room.  Sahi repeats this several times.  After six 
repetitions, Sahi walks into the room and turns towards the light switch.  
However, before she presses it, the CSL agent turns on the light.  Likewise, 
when Sahi walks to the door to leave the room the agent turns the light off.  
                                                
1 The idea of a smart chair is easily implemented in Second Life using built in functions to detect ‘sit 
actions’ by avatars.  In the real world, a smart chair could have a pressure sensor in the seat, or be 
implemented using cameras to detect when people are seated in the chairs. 
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In this experiment it required six repetitions of the action for the agent to 
learn the behaviour.  This could be decreased (or increased) by modifying 
the LEARNING_RATE or NOVELTY_THRESHOLD parameters.  The 
advantage of a higher learning rate is that fewer repetitions are required for 
the agent to learn a behaviour.  However, learning is less tolerant to mistakes 
or random actions performed by avatars.  Likewise, higher novelty threshold 
would mean that examples become curious more quickly.  However this 
would mean that the agent may try to learn about random occurrences, when 
there is very little to be learned in such scenarios.      
 

 
Figure 3.  The curious supervised learning agent learns to turn on the lights when an avatar 

enters the room. 

In the second experiment, Sahi brings a SMART Board and three smart 
chairs into the virtual room.  They are detected by the BLIP System and the 
new state and action space communicated to the CSL agent in a CFG 
representation.  Sahi then sits down, and turns on the SMART Board, which 
launches Skype as shown in Figure 4.  After some time, she gets up and 
turns off the SMART Board.  She repeats this sequence several times.  
Again, after six trials, the agent is able to predict Sahi’s needs and turn on the 
SMART Board when she sits down.  Likewise, the agent turns the board off 
when Sahi stands up.  This experiment demonstrates the ability of the CSL, 
in combination with an adaptive middleware layer, to adapt the behaviour of 
the room to a new device and new human activities.    

One limitation to emerge from this example, is that, because the 
introduction of the SMART Board has changed the state space of the room, 
the agent will no longer turn the lights on and off automatically.  If the 
SMART Board were removed, the light switching behaviour would be 
remembered, but if the light switching behaviour is required while the 
SMART Board is in the room, the agent must be taught the sequence again.  
This limitation is apparent because we use a table-based learner in this 
prototype.  This means that every state is treated as unique and an action 
must be learned for that state.  The agent is very accurate in learning but 
unable to generalise behaviours learned in one state to other similar states.  
A neural network supervised learner may be more appropriate for this.   

A similar issue is that the agent will only respond by turning on the lights 
when Sahi Kipling enters the room.  If another avatar enters the room and 
wants the lights on, they will have to teach the agent that behaviour 
themselves.  If the agent could generalise, then it could apply the same 
behaviour for Sahi to other avatars.  However, the disadvantage of this is 
that the other user may want different behaviours.  There is a trade off 
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between the ability to generalise behaviours and the ability to recognise 
different contexts.    
 

 
Figure 4. After a SMART Board is brought into to the room, the same curious supervised 

learning agent learns to turn on the SMART Board and launch Skype when an avatar sits on 
the smart chairs in front of the board. 

The third experiment shows that the agent can adapt longer action 
sequences.  No changes are made to the devices in the room or the CSL 
agent, following the previous experiment.  Sahi sits down and the CSL agent 
responds by turning on the smart board.  Sahi then turns off the lights2.   
After some time, Sahi stands up, turns off the SMART Board and turns the 
lights back on.  She repeats this several times.  After six repetitions, when 
Sahi sits down, the curious agent responds by, not only turning on the 
SMART Board, but also turning off the lights.  This experiment illustrates 
two properties of the CSL agent.  First, the agent can learn sequences of 
actions to form a behaviour.  Secondly, the agent can adapt a previously 
learned sequence to changes in human activities. 

An issue arises from this example if Sahi no longer wants the lights off 
when using the SMART Board.  When she turns the board on, the agent 
responds by turning the lights off.  So Sahi has to turn the lights on again.  
Eventually the agent will learn this sequence, but it will be inefficient – it will 
first turn the lights off then turn them on again.  One possible solution is a 
user interface by which users can manually edit, override or delete learned 
behaviours.   

 

 
Figure 5.  The same curious supervised learning agent adapts its previously learned 

behaviour and learns to turn on the SMART Board, launch Skype and turn off the lights 
when an avatar sits down in front of the board. 

                                                
2 One useful property of virtual rooms is that switches can be reached from a distance.  In a physical room 
this action sequence would have to be performed in a different order or using a remote control. 
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4. Conclusions and Future Work 

This paper has presented a model of curious supervised learning (CSL) agents 
for adaptive behaviour in an intelligent virtual room.  Experiments 
demonstrate the ability of agents using this model to adapt to human activities 
and new devices in the room.  While the experiments presented in this paper 
represent a proof-of-concept for the CSL agent model, further work is 
required to develop these models.  First, we hope to develop CSL agents 
with more complex curiosity modules to enable more effective attention focus 
and goal finding behaviour.  We will also develop a suite of more significant 
experimental scenarios to better test the range of functionality of CSL agents.  
This test suite will include environments with greater numbers of potential 
learning tasks, dynamic environments and environments with more complex 
learning tasks.  The ultimate aim of this testing is to develop CSL agent 
technologies from the virtual world to real world scenarios.       
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