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Abstract.  This paper presents a “curious design agent”, i.e. an agent
that uses the search for novel designs to guide its design actions. A
computational model of curiosity based on a process called novelty
detection is presented.  The behaviour of the computational model is
illustrated with a curious design agent searching the space of two-
dimensional patterns generated by a simulated Spirograph is reported.

1. A Computational Model of Curiosity

Curiosity is the motivation to discover new knowledge when faced with an
unfamiliar situation (Berlyne, 1971). It promotes self-directed learning by
rewarding behaviour that results in the assimilation of new knowledge.
Curiosity can be used to guide the search and exploration of unfamiliar
design spaces to find new knowledge with the goal of gaining a better
understanding of a non-routine design task. Curious search can be used to
guide problem solving to find interesting design solutions. Curious
exploration can be used to guide problem finding to discover interesting
design problems. In this paper we concentrate on the role of curiosity in the
search for interesting design solutions.

The curious design agent presented here uses a computational process
called novelty detection to determine its level of interest in designs. The
curious design agent uses the detection of novelty to guide its search during
the course of a design session. Determining interestingness based on novelty
depends upon the knowledge of the agent and its computational abilities;
things are boring if either too much or too little is known about them
(Schmidhuber, 1997).
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A neural network called a self-organising map or SOM (Kohonen, 1995)
is used in the following experiment to implement a simple novelty detector.
SOMs project vectors in the high dimensional space onto a hyperplane,
typically two-dimensional. The projection provides an ordered map of the
high dimensional space with similar vectors clustered together into
neighbourhoods.

The simple novelty detectors implemented for this experiment use a SOM
to provide an adaptive representation of the design space with respect to the
experiences of the agent. The SOM projects high dimensional vectors
representing images onto a two-dimensional map of category prototype
vectors represented by neurons. We can think of this projection as the
“conceptual design space” of the agent, representing the forms that the agent
has experienced often enough to learn.

The novelty detector uses the learned representation of the design space
to recognise novel designs, i.e. designs that are not well represented by the
categories of the SOM. For a given input the novelty detector uses the
activation of the best matching neuron in the SOM to determine the
typicality of the input for that neuron’s assigned category. Novelty is
calculated as the complement of the typicality measure, i.e. the less typical
the more novel it is.

Interest in a given input is calculated by applying a sigmoid transform to
the calculated novelty measure. The sigmoid transform is used to
approximate the cumulative Gaussian curve observed in studies of human
arousal (Berlyne, 1971). This transformation provides a more definitive
judgement of interest than the linear scale of novelty.

The calculated level of interest is used to model curiosity by favouring
actions that promote the learning of new representations of the design space.
This is simply achieved by attenuating the magnitude of design mutations in
proportion to how interesting the design is judged to be.

1.1. SEARCHING FOR NOVEL SPIROGRAPH PATTERNS

To illustrate the behaviour of a curious design agent we have implemented a
computational model of a prototypical design generator from childhood: the
Spirograph1. Spirograph sets consist of an array of plastic gears. To draw a
pattern one gear is fixed to a piece of paper and a second gear is moved
around it while tracing its path by pushing a pen through a hole in the
interior. This simple toy has charmed children for over 30 years and has no
doubt sparked an interest for geometrical patterns in budding architects and
designers.

                                                
1 Spirograph is a registered trademark of Hasbro.
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The goal of this experiment is to examine the behaviour of a curious
design agent as it searches the space of patterns that can be generated using
the simulated Spirograph. A simple arrangement of circular gears can be
mathematically modelled using the following equations:

x = (r1+r2) × cosθ1 – r2 × cosθ2 (1)
y = (r1+r2) × sinθ1 – r2 × sinθ2

where: r1 = radius of fixed gear
r2 = radius of moving gear
θ1 = rotation of moving gear around fixed gear
θ2 = rotation of moving gear

Figure 1 illustrates the variety of Spirograph patterns that is possible for
a small selection of random values for r1 and r2. Visually, two broad
categories of Spirograph patterns can be readily distinguished: simple
patterns produced with a few rotations of the moving gear around the fixed
gear and complex patterns produced with many rotations. The number of
rotations is dictated by the greatest common denominator of the two radii.
Figure 1 shows that for a random sample of the design space complex
patterns are far more common.

r2

r 1

Figure 1. A random sample of Spirograph patterns with a small selection of random values
for the fixed gear radius (r1) and the moving gear radius (r2).

We set a curious design agent to search a sub-space of possible
Spirograph patterns bounded by gear ratios r1:r2 from -100:1 to 100:1. The
agent explored the space of possible Spirograph patterns by changing the
value of the ratio directly, rather than the values of the gear radii, as this
provides a more predictable space of patterns because similar gear radii can
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produce wildly different patterns, whereas similar ratios generally produce
similar patterns. The patterns were analysed by the agent as 32x32 pixel
greyscale images. At this resolution many of the finer details of the patterns
are lost and the classification of the patterns is based on larger scale
features.

1.1.1. Results
The novelty detected by the agent during a search of the design space for the
first 200 time steps is shown in Figure 2. The chart shows that the curious
design agent performs an initial search of the design space, up to time step
54, when little novelty is detected. The agent then repeatedly finds
interesting patterns, indicated by peaks in novelty and will remain with a
novel pattern to learn a category for it, producing a tailing-off in the novelty
detected as the category is constructed.
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Figure 2. A chart showing the novelty detected over time for the first 200 time steps of a
typical run. The chart shows an initial period where little novelty is detected followed by a
series of peaks as novel patterns are discovered. The chart also shows the tailing-off of the

novelty detected after each peak as the novel pattern’s category is learned.

SOMs are often used to visualise complex multi-dimensional vector
spaces and we have used the SOMs constructed by a curious and a non-
curious agent to visualise the “conceptual design spaces” constructed by
these agents. The non-curious agent trained its SOM on a random sample of
patterns. The curious agent trained its SOM by generating patterns as
described above. Each agent explored the design space for 400 time steps.

Figure 3 shows the representations learned by the SOMs of the two
agents. Each grid shows the two-dimensional map of the design space that
has been learned. Each cell corresponds to a neuron in the lattice of the SOM
and shows the prototypical image of the category it represents. The
prototype is an average of the images of the patterns that are contained
within the category.

Although the networks have mapped the design space differently, some
correspondences can be found, e.g. the categories found in the bottom half
of the non-curious agent’s map (D1–F6) roughly correspond to those found
in the top-left corner of the curious agent’s map (A1–D4).
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Figure 3. The above maps show the bitmap images of the prototype patterns represented by
the neurons of two 6x6 SOMs trained with (a) a random selection of patterns chosen by a non-

curious agent, and (b) a set of ‘interesting’ patterns chosen by a curious design agent.

1.1.2. Analysis
Figure 2 shows that little novelty is detected in the first 50 time steps of
searching. During this phase the lack of novelty means that mutations of the
design parameters, i.e. the ratio of gears, will be high. Consequently, the
agent begins by learning from a fairly random sample of patterns and as
Figure 1 illustrates the agent is consequently exposed to far more complex
patterns than simple ones. The result is that the agent learns a set of
categories for typical, complex patterns first.

Once an initial set of pattern categories has been learned, novel patterns,
i.e. simple patterns, can be recognized. Figure 2 shows that the agent spends
most of its time beyond the time step 55 learning novel patterns in some
cases spending as long as 10 time steps learning a single pattern, indicated
by the slow decay in the novelty detected.

The two phases of learning are reflected in the differences between the
SOMs produced by the curious and non-curious agents shown in Figure 3.
The maps share similar representations for typical patterns, e.g. compare the
prototypes E1, E5, F5 in the non-curious agent’s map with A3, C4, D3 in the
curious agent’s map respectively. However, the maps differ considerably in
their representation of novel patterns. For example, the non-curious agent’s
map has only a few categories in rows A and B that are similar to those
found in rows E and F and columns 5 and 6 of the curious agent’s map.

In fact, the curious agent’s map devotes nearly 50% of its categories to
different types of novel patterns whereas only ~15% of the categories in the
non-curious agent’s map represent unique novel patterns. This marked
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difference between the maps reflects the prolonged learning of novel
patterns as a consequence the actions of the curious agent. As a result of this
improved map of some initially novel patterns the curious agent will no
longer find the simple patterns represented to be novel and will have to
search for new patterns in order to maintain interest in the design space.

The neural networks used in the above experiment are relatively small
compared to the design space, and so are never likely to accurately represent
all of the possible Spirograph patterns. However, larger neural networks and
more powerful learning systems may have the capacity to learn the space of
Spirograph patterns so well that they can become “bored” with the entire
space, triggering the exploration of new design spaces.

2. Discussion

The results from the above experiment, and similar experiments in other
domains (Gero and Saunders, 2000; Saunders and Gero, to appear), suggest
that providing design agents with a sense of curiosity confers significant
advantages in the search of ill-defined design spaces. Computational models
of curiosity provide general-purpose, knowledge-lean heuristics to guide the
search for potentially interesting, and possibly even creative, designs.

Future work will need to develop the role of curious design agents in the
user interface of design tools such as CAAD systems. The benefit for future
CAAD systems that incorporate curious design agents is that these agents
will be able to assist designers exploring unfamiliar design spaces.
Computational models of curiosity promise to provide agents that can
usefully engage in collaborative, non-routine design by reducing the set of
generated designs requiring a designer’s attention to those that are
potentially interesting.
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